• Title/Summary/Keyword: Photoelastic stress analysis

Search Result 113, Processing Time 0.019 seconds

PHOTOELASTIC ANALYSIS OF STRESS INDUCED BY FIXED PROSTHESES WITH RIGID OF NONRIGID CONNECTION BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED IMPLANT (골육착성 보철 치료시 임플랜트와 자연 지대치와의 연결 방법에 따른 관탄성 응력 분석)

  • Kim, Young-Il;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.271-300
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstrcture. This investigation evaluated the stress patterns in a photoelastic model produced by three different types of dental implants such as Branemark, Steri-Oss, IMZ and resin tooth using the techniques of quasi three dimensional photoelasticity. The teeth-supported bridge had a first molar pontic supported by second premolar and second molar as a control group. The implant and toothsupported bridge had a first molar pontic supported by second premolar and implant posterior retainer as an experimental group. Prostheses were mechanically connected to an adjacent second premolar by the rigid of nonrigid connection, Nonrigid connection used an attachment placed between the tooth-supported and fixture-supported component. The female(keyway) of attachment was placed on the distal end of the retainer supported by the tooth ; the male(Key) of attachment connected to the osseointegrated bridge was engaged into the keyway. All prostheses were casted in the same nonprecious alloy and were cemented and screwed on their respective abutments and implants. 16㎏ of vertical loads on central fossae of second premolar, first molar pontic, implant of second molar were applied respectively and 6.5㎏ of inclined load on middle buccal surface of first molar pontic was applied. The results were as follows : 1. Under the vertical load on the central fossa of first mloar pontic, the stress developed at the apex of tooth of implat was more uniformly distributed in the case of nonrigid connection than in the case of rigid connection. 2. Under the vertical load on the central fossa of first molar pontic, the stress developed around the cervical area of tooth of implant was larger in the case of rigid connection than in the case of nonrigid connection because the bending moment was more occured in the case of rigid connection than in the case of nonrigid connection. 3. Stress was more restricted to the loaded side of nonrigid connection than to that of rigid connection 4. Under the inclined load. The set screw loosening of implant was more easily occured in the case of nonrigid connection than in the case of rigid connection due to torque moment. 5. In the case of Branemark implant, the stress concentration in second premolar was larger and the stress developed around the cervical area of implant was lower than any other cases under the vertical load, because Branemark implant with the flexible gold screw was showed in incline toward second premolar by a bending moment. 6. The stress developed around the apex of tooth or implant was more uniformly distributed in the case of Steri-Oss implant with stiff screw than in the case of Branemark implant under the vertical load. But, the stress developed around the cervical area of the Steri-Oss implant was larger than that of any other implants because bending moment was occured by vertical migration of second premolar. 7. The stress distribution in the case of IMZ implant was similar to the case of natural teeth under small vertical load. But, the residual stress around the implant was showed to occurdue to deformation of IMC and sinking of screw under larger vertical load.

  • PDF

A photoelastic study on the initial stress distribution of the upper anterior teeth retraction using combination loop archwire and sliding mechanics (Combination loon archwire와 활주역학을 이용한 상악전치의 후방 견인시 나타나는 초기 응력 분포에 관한 광탄성학적 연구)

  • Yim, Kang-Soon;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.303-312
    • /
    • 2004
  • An unfavorable tipping movement can occur during the retraction of anterior teeth because orthodontic force is loaded by brackets positioned far from the center of resistance. To avoid this unfavorable movement, a compensating curved wire or lingual root torque wire is used. The purpose of this study is to investigate, using photoelastic material, the distribution of initial stress associated with the retraction of the incisors according to the degree of the compensating curve, to model changes associated with tooth ud alveolar bone structure. The following results were obtained by analysis of the polarizing plate of the effects of initial stress resulting from retraction of the anterior teeth: 1. When the incisors were retracted using combination archwire or sliding mechanics, the maximal polarizing pattern of the apical area decreased as the degree of the compensating owe increased from 0 to 15 to 30. 2. When the incisors were retracted by the combination archwire or sliding mechanics, the maximal polarizing pattern of the canine and premolar area increased as the degree of the compensating curve increased from 0to 15to 30. 3. A lower degree of polarizing patterns were associated with the combination archwire technique than the sliding mechanics technique at a given force. The above results indicate that there is no significant difference between the combination loop archwire technique and sliding mechanics, for the retraction of maxillary anterior teeth with decreased lingual tipping tendency by a compensating curve on the arch wire. However, the use of sliding mechanics is more effective for the prevention of lingual inclination of the anterior teeth, because the hook used in sliding mechanics is closer to the center of resistance of the maxillary anterior teeth.

A literature review on clinical/ laboratory misfit evaluation on implant-prosthesis (임플란트와 상부보철물의 임상적/실험적 부적합 평가에 관한 문헌고찰)

  • Kim, Jong-Hoi;Cho, Woong-Rae;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of the Korean dental association
    • /
    • v.56 no.9
    • /
    • pp.462-478
    • /
    • 2018
  • The presence of implant-prosthesis misfits can cause various complications. It is very important to detect misfits to prevent such complications. There are various evaluation methods for misfit assessment including clinical methods and laboratory in vitro methods. The clinical misfit evaluation includes radiographic analysis, visual observation, probing, Sheffield test, evaluation with disclosing materials, and screw resistance test. The laboratory in vitro evaluation method includes indirect modelling evaluation and direct metrological visualization. Of the indirect modelling methods, photoelastic stress analysis, finite element analysis, strain gauge analysis, and microbial colonization analysis were reviewed. Of the direct metrological visualization, microscopic analysis, 3-D photogrammetric analysis, coordinate measuring analysis, and radiographic analysis were reviewed. In this review, the characteristics, advantages and disadvantages of each method were evaluated.

  • PDF