• Title/Summary/Keyword: Photocycle

Search Result 17, Processing Time 0.019 seconds

Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering

  • Kim, Tae-Kyu;Zuo, Xiaobing;Tiede, David M.;Ihee, Hyot-Cherl
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1676-1680
    • /
    • 2004
  • We demonstrate that wide-angle X-ray scattering pattern from photoactive yellow protein (PYP) in solution using a high flux third generation synchrotron X-ray source reflects not only the overall structure, but also fine structures of the protein. X-ray scattering data from PYP in solution have been collected in q ranges from 0.02 ${\AA}^{-1}$ to 2.8 ${\AA}^{-1}$. These data are sensitive to the protein structure and consistent with the calculation based on known crystallographic atomic coordinates. Theoretical scattering patterns were also calculated for the intermediates during the photocycle of PYP to estimate the feasibility of time-resolved wide-angle X-ray scattering experiments on such proteins. These results demonstrate the possibility of using the wide-angle solution X-ray scattering as a quantitative monitor of photo-induced structural changes in PYP.

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.

Dynamics of All-Optical Switching in Bacteriorhodopsin and its Application to Optical Computing

  • Singh, C.P.;Roy, Sukhdev
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.317-319
    • /
    • 2002
  • All-optical switching has been demonstrated in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial 8 state absorption. The switching characteristics have been analyzed using the rate equation approach considering all the six intermediate states (B, K, L, M, N and 0) in the bR photocycle. The switching characteristics are shown to be sensitive to life time of the M state, absorption cross-section of the 8 state at probe wavelength ($\sigma$ $\_$Bp/) and peak pump intensity. It has been shown that the probe laser beam can be completely switched off (100 % modulation) by the pump laser beam at relatively low pump powers, for $\sigma$$\_$Bp/ = O. The switching characteristics have been used to design all-optical NOT, OR, AND and the universal NOR and NAND logic gates for optical computing with two pulsed pump laser beams.

  • PDF

Ultraviolet Resonance Raman Spectroscopy of Bacteriorhodopsin and Its Photointermediates

  • Hashimoto, Shinji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.114-117
    • /
    • 2002
  • Ultraviolet resonance Raman (UVRR) spectroscopy was used to elucidate the dynamic change of the protein structure of bacteriorhodopsin (BR) during the photocycle. The photointermediates minus light- adapted (LA) BR difference spectra show Trp difference signals, which are assigned to Trp189 or Trp182 on helix F by using the mutants, W182F and W189F. The Difference signals of Trp 182 indicates an increase in hydrogen bonding strength at the indole nitrogen and a large change in the side chain conformation (X$\^$2,1/ torsion angle) in the M$_1$ \longrightarrow M$_2$ transition. On the other hand, Trp189 shows an increased hydrophobic interaction. These results suggest that the tilt of helix F occurs in the M$_1$\longrightarrow M$_2$ transition. In the M$_2$ \longrightarrow N transition, the hydrophobic interaction of Trp182 decreases drastically, The decrease in hydrophobic interaction of Trp182 in the N state suggests an invasion of water molecules that promote the proton transfer from Asp96 to the Schiff base. Structural reorganization of the protein after the tilt of helix F may be important for efficient reprotonation of the Schiff base.

  • PDF

Association between a M-Iacking mutant D75N of pharaonis phoborhodopsin and its transducer is stronger than the complex of the wild-type pigment: Implication of the signal transduction

  • Sudo, Yuki;Iwamoto, Masayuki;Shimono, Kazumi;Kamo, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.314-316
    • /
    • 2002
  • In halobacterial membrane, pharaonis phoborhodopsin (or pharaonis sensory rhdopsin II, psRII) forms a complex with its transducer pHtrII. Flash-photolyis of D75N mutant did not yield M-intermediate but an O-like intermediate is observed. We examined the interaction between D75N of ppR and t-Htr (truncated pHtrII). These formed a complex in the presence of n-dodecyl-$\beta$-D-maltoside, and the association accelerated the decay of the 0 of D75N from 15 to 56 s$\^$-1/. From the decay time constants under varying ratios of D75N and t-Htr, n, the molar ratio of D75N/t-Htr in the complex, and K$\_$D/, the dissociation constant, were estimated. The value of n was unity and K$\_$D/ was estimated to 146 nM. This K$\_$D/ value can be considered as the association between the photo-intermediate and t-Htr, which is deduced by the method of estimation. Previously we (Photochem. Photobiol. 74, 489-494 (2001)) reported K$\_$D/ of 15 $\mu$M for the interaction between the wild-type and t-Htr by means of the change of M-decay rates. Therefore, this value should be the K$\_$D/ value for the interaction between M of the wild-type and t-Htr.

  • PDF

Influence of Arg72 of pharaonis Phoborhodopsin on M-intermediate Decay and Proton Pumping Activity

  • Ikeura, Yukako;Shimono, Kazumi;Iwamoto, Masayuki;Sudo, Yuki;Kamo, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.311-313
    • /
    • 2002
  • X-ray structures of pharaonis phoborhodopsin (ppR) show the different direction of the side chain of Arg72 from that of the corresponding residue (Arg82) of bacteriorhodopsin, BR. For BR, this residue is considered to play an important role in the proton pumping. In order to investigate the role of Arg72 in ppR, we constructed Arg72 mutants of R72A, R72K and R72Q, and measured the photocycle and proton pumping activities. The pH-titration curves on the absorption maximum of the mutants were shifted to alkaline in comparison of that of the wild-type. This may imply the increase of pKa of D75, suggesting the presence of the (probably electric) interaction between D75 and Arg72. Rate constants of the M-decay were 3-7 times faster than that of the wild-type, and the time for the completion of the photocycling was also reduced. Using Sn0$_2$ electrode, the rate of transmembrane proton transport was measured upon illumination. The photo-induced proton pumping activities were estimated after the corrections that are the percentages of the associated form of D75 (which has no pumping activity) and the photocycling rates. R72A and R72Q showed the reduced activity while R72K did not reduce the activity.

  • PDF

Effects of Dissolved Oxygen and Depth on the Survival and Filtering Rate and Pseudofeces Production of a Filter-feeding Bivalve (Unio douglasiae) in the Cyanobacterial Bloom (남조류 대발생 환경에서 수심과 용존산소 변화에 따른 담수산 이매패(말조개)의 생존율, 여과율 및 배설물 생산)

  • Park, Ku-Sung;Kim, Baik-Ho;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.50-60
    • /
    • 2008
  • We performed the experiment to evaluate the effect of different DO concentrations (0.5, 4.5 and 9.0 $mgO_2L^{-1}$) and water depths (20, 50 and 80 cm) on the filtering rate, mortality, and pseudifeces production of Unio douglasiae against the cyanobacterial bloom (mainly Microcystis aeruginosa). A solitary-living bivalve U. douglasiae was collected in the upstream region of the North Han River (Korea). The harvested mussels were carefully transferred to the laboratory artificial management system, which was controlled temperature $(18{\pm}2^{\circ}C)$, flow rate (10L $h^{-1}$), food $(Chlorella^{TM})$, sediment (pebble and clay), light intensity (ca. $20{\mu}mol$ photons), and photocycle (12 L : 12 D). In the field observation, the mussel mortality was significantly correlated with water temperature, pH and DO concentration (P<0.05). The mortality was decreased with water depth; 65, 90, 80% of mortality at 20, 50, 80 cm water-depth, respectively. Filtering rate (FR) showed the highest value at 50 cm water depth, and thereby the concentration of chlorophyll-${\alpha}$ decreased continuously by 94% of the control at the end of the experiment. In contrast, FR decreased by 34% of the initial concentration at 20 cm water depth. Over the given water-depth range, the mussel FR ranged from $0.15{\sim}0.20L\;gAFDW^{-1}hr^{-1}$ during the 18hrs of experiment, and thereafter, they appeared to be approximately 0.11, 0.26 and 0.30 L $gAFDW^{-1}hr^{-1}$ at 20, 50 and 80cm water depth, respectively. FR was highest with the value of 0.46L $gAFDW^{-1}hr^{-1}\;at\;0.5mgO_2 L^{-1}$ at the early stage of the experiment, while it increased with DO concentration. Maximum pseudofaeces production was 11.2 mg $gAFDW^{-1}hr^{-1}\;at\;9.0mgO_2L^{-1}$. Our results conclude that U. douglasiae has a potential to enhance water quality in eutrophic lake by removing dominant cyanobacteria, but their effects vary with environmental parameters and the water depth at which they are located.