• 제목/요약/키워드: Photochemical Reaction Mechanism

검색결과 27건 처리시간 0.024초

발암성 분자와 식품보존제의 광화학 및 열적 반응메카니즘 (Photochemical and Thermal Reaction Mechanism for the Reaction of Carcinogenic Molecules and Food Reservatives)

  • 김민식;채기수;김갑순;성대동
    • 한국식품영양학회지
    • /
    • 제11권3호
    • /
    • pp.267-271
    • /
    • 1998
  • Seyferth 시약인 phenyl(tribromomethyl) mercury 및 diazomethane의 식품보존제인 dehydroacetic acid 및 coumarin과의 발암성과 그 반응기작을 분자 구조적 관점에서 알아보기 위하여 UV/vis 조건과 laser flash photolysis 시켰을 때의 결과는 다음과 같다. 1. Diazomethane과 Phenyl(tribromomethyl) mercury와 dehydroacetic acid와 diazomethane과의 반응은 광화학적 분해 반응에서 생성된 : CBr2와 : CH2 카르벤 중간체의 이탈기 효과에 따라 발암성이 크게 나타났다. 2. laser flash photolysis 상에서 반응시켰을 때 식품보존제의 발암성이 UV/vis 상에서의 photolysis 때보다 크게 나타났다.

  • PDF

A Study on the Mechanism for Photochemical Insertion of Methanol Into Aryl Ketocarbenes

  • Sung, Dae-Dong;Lee, Jong-Pal;Lee, Yong-Hee;Ryu, Worl-Sun;Ryu, Zoon-Ha
    • Journal of Photoscience
    • /
    • 제7권1호
    • /
    • pp.15-19
    • /
    • 2000
  • The photochemical reaction mechanism has been investigated for methanol insertion into the p-substituted phenylketo carbenes. The triplet spin state of phenyl koto carbene is stabilized by the neighbored carbonyl electrons. When the phenylketo carbene reacts with methanol, the ylied intermediate is formed, then moves to the activated transition state.

  • PDF

실내/외 스모그 챔버에서의 방향족계 탄화수소의 광화학 반응 비교 연구 (Comparative Study on Photochemical Reactions of Aromatic Hydrocarbons in Indoor and Outdoor Smog Chambers)

  • 동종인;안흥순
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.231-240
    • /
    • 2005
  • The number of cases exceeding environmental standards of atmospheric ozone in the major cities in Korea has steadily increased during the past decades. In order to understand and analyze the atmospheric reactions in the atmosphere, especially the secondary photochemical reactions, smog chambers studies have been performed very actively by many research groups worldwide. However, these studies have focused on the mechanism of photochemical reactions in high concentration conditions, not at the ambient levels. Therefore, in-depth studies in these conditions are essentially needed to realize exact mechanism in the atmosphere near the earth surface, especially at Korean atmospheric conditions. In this experiment, the mechanism of photochemical smog was examined through a comparative experiment of smog chambers under sun light and black light conditions. The results of our study indicated that concentrations of ozone, aldehyde, and PAN increased as the radiation of light source increases. Photochemical reaction patterns can be considered quite similar for both black light and sun light experiments. Based on our experiments using toluene as a reactant which is present at significant high levels in ambient air relative to other VOCs, it was found that toluene could contribute notably to oxidize NO to $NO_2$, this reaction can eventually generate some other photochemical oxidants such as ozone, aldehyde, and PAN. The results of simulation and experiments generally showed a good agreement quite well except for the case of $O_3$. The restriction of oxidization of NO to $NO_2$ seems to cause this difference, which is mainly from the reaction of peroxy radical itself and other reactants in the real gas.

The investigation of photochemical reaction of phototoxic antimalarial compounds

  • Yoon, Ung-Chan;Epling, Gary-A.
    • Archives of Pharmacal Research
    • /
    • 제3권2호
    • /
    • pp.87-88
    • /
    • 1980
  • The goal of this research is to provide information that will lead to the development of new non-phototoxic antimalarial compounds. The goal was approached by first learning the chemical mechanism of phototoxicity of six representative compounds 1a-f: a[(diethyl-, -dihexyl-, and -dioctyl- aminomethyl)]-2-(3', 4' -dichlorophenyl)-6-methoxy-4-quinolinemethanol (1a, 1b, and 1c) and .alpha. [(diethyl-, -dibutyl-, and -dihexyl-aminomethyl)]-2-(-4'-methoxyphenyl-6-methoxy-7-chloro-4-quinolinemethan ol (1d, 1e, and 1f). The photochemical reaction of these compounds was investigated in 2-propanol. Similar photochemical fragmentation reactions accurred in all compounds.

  • PDF

대기내 발생하는 복잡한 광화학반응에 대한 수치실험 (Numerical Simulation of Complicated Photochemical Reactions Occurring in the Atmosphere)

  • 원경미;김유근;이화운;김희정
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.203-209
    • /
    • 2006
  • In predicting oxidants concentration, the most important fact is to select a suitable photochemical reaction mechanism. Sensitivity analysis of $O_3$ and other important photochemical oxidants concentrations was conducted by using CBM-IV model. The predicted oxidants concentration was considerably related with the initial concentration of formaldehyde, $[NO_2]/[NO],\;NO_x$, RH and RCHO. As the initial concentration of formaldehyde increased, concentration of $NO_2$ increased. $O_3$ concentration was proportional to the $[NO_2]/[NO]$ ratio. When the initial concentrations of RH and RCHO were high, photochemical reaction was more reactive, including more rapid conversion of NO to $NO_2$ and increased oxidants. Also, the sensitivities of ozone formation to rate constants, $K_l,\;K_2\;and\;K_3$ in the $NO_2$ photolysis were studied.

Hula-twist, a Supramolecular Photoisomerization Reaction Mechanism in Reactions of Photosensitive Biopigments

  • Liu, Robert S.H.
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.1-4
    • /
    • 2002
  • Hula-twist is a volume-conserving photoisomerization reaction mechanism postulated in 1985 to account for the rapid photoisomerization of the retinyl chromophore in rhodopsin. The requisite stereochemical consequence of simultaneous isomerization of a double bond and an adjacent single bond has recently been demonstrated in isomerization of pre-vitamin D in an organic glass and by many other examples of organic systems already reported in the literature This paper reports the consequence in applying the mechanism to the primary photochemical process of several photosensitive biopigments: bilirubin, photoactive yellow protein, bacteriorhodopsin and rhodopsin. It is shown that the anchored nature of the chromophores must first be taken into consideration.

  • PDF

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

분자 궤도론에 의한 반응성 계산 (I) Benzene과 Maleic Anhydride 간의 광화학 반응 (Determination of Reactivities by Molecular Orbital Theory (I) Theoretical Treatment on the Photochemical Reaction of Benzene and Maleic Anhydride)

  • 황보명환;이익춘
    • 대한화학회지
    • /
    • 제13권4호
    • /
    • pp.273-280
    • /
    • 1969
  • Maleic Anhydride의 분자궤도를 다음의 파라미터를 사용하여 계산하였다. $h_{o}$=1, $h_{o}$=2, $k_{c=o}$ =0.8 ${\delta}_{{\alpha}_n}=2{\times}(0.3)^n$ 얻어진 분자궤도들로부터 Benzene과 Maleic Anhydride(MA)의 광화학적반응의 작용 에너지를 구하였다. 작용에너지에는 상수항이 포함될 수 있으며 이항이 작용 에너지에 크게 기여함을 보였고 이 반응의 메카니즘은 계산된 작용에너지로 잘 설명됨을 밝혔다. 또한 MA의 두번 째 첨가반응이 광화학적으로 가능하며 MA-Benzene의 부가 생성물은 잘 알려진 입체 화학적 구조를 가져야함을 증명하였다.

  • PDF

UVB 조사에 의한 페플록사신의 광독성 유발 기전 (Phototoxic Potential Mechanism of Pefloxacin Irradiated by UVB)

  • 최윤수;이경선
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.703-708
    • /
    • 1999
  • The effect of antioxidants on photochemical reaction of pefloxacin by UVB (290~320 nm) was investigated and the possible mechanism of phototoxicity on the skin was also studied. The photo-degradation of pefloxacin by UVB was suppressed by cysteine, reduced glutathione and ascorbic acid, but was promoted by ${\alpha}-tocopherol$. Squalene, accounts for more than 10% of skin surface lipids, was peroxidized by pefloxacin through both radical and singlet oxygen mechanism.

  • PDF

LASER FLASH PHOTOLYSIS STUDY ON THE PHOTOCYCLIZATION OF N-(O-HALOBENZYL) IMIDAZOLE

  • Park, Yong-Tae;Hwang, Young-Sun;Song, Woong Song;Kim, Dongho
    • Journal of Photoscience
    • /
    • 제3권2호
    • /
    • pp.91-93
    • /
    • 1996
  • In connection with our interest on the photochemical properties of heteroaryl halides, which are currently the subject of heterocyclic ring formation and haloarene degradation, we have studied the photochemistry of the haloarene linked to N-heteroarene compounds. Imidazo[5,1-a]isoindole was synthesized from N-(ochlorobenzyl)imidazole or N-(o-bromobenzyl) imidazole in acidic aqueous solution or acetonitrile via the intramolgcular photocyclization (Table 1). This type of reaction provides the synthetic methods for 5- and 6-membered polyheteroatomic heterocyclic ring compounds. However, the reaction mechanism for the intramolecular photocyclization of haloarene tethered heteroarenes has not yet been established. Grimshaw et al. suggested a mechanism for homolyric carbonhalogen bond fission assisted by radical complexation to explain their results in the photocyclization of 5-(2-chlorophenyl)-1,3-diphenylpyrazole. They also reported the detection of acyclohexadienyl intermediate involved in the above reaction. Park et al. reported several transient 'intermediates involved in the laser flash photolysis of N-(o-halobenzyl) pyridinium and N-benzyl-2-halopyridinium salts. Thus we performed the laser flash photolysis study on the photocyclization reaction of N-(o-chlorobenzyl) imidazole to identify the intermediate species involved in the reaction. Here, we report on the preliminary results in the photocyclization reaction of N-(o-halobenzyl)imidazole through the detection of reaction intermediates.

  • PDF