• Title/Summary/Keyword: Photocatalytic-coated

Search Result 128, Processing Time 0.021 seconds

The effect of nano-Zinc oxide on the self-cleaning properties of cotton fabrics for textile application

  • Panutumrong, Praripatsaya;Metanawin, Tanapak;Metanawin, Siripan;O-Charoen, Narongchai
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The self-cleaning properties of nano-zinc oxide on cotton fabrics have been investigated. The cotton fabric has been prepared by pad-dry method. The nano-zinc oxide was encapsulated in the polystyrene particle by mini-emulsion process prior used. The loading amount of zinc oxide particles into the mini-emulsion were various from 1% wt to 40%wt. The particles sizes of ZnO-encapsulated polystyrene mini-emulsion were determined using dynamic light scattering. It was showed that the particle size of the mini-emulsion was in the range of 124-205 nm. The topography and morphology of ZnO-encapsulated polystyrene which coated on cotton fabrics was observed using scanning electron microscopy. The crystal structure of ZnO-coated on cotton fabrics was explored by X-ray diffraction spectroscopy. The photocatalytic activities of zinc oxide were present through the self-cleaning properties. The presents of the zinc oxide on cotton fabrics significantly showed the improving of the self-cleaning properties under UV radiation.

Characteristic of Degradation of Humic Acid using Jeju Scoria Coated with WO3/TiO2 Photocatalyst (제주 Scoria에 코팅된 WO3/TiO2 광촉매를 이용한 Humic Acid의 광분해 특성)

  • Ryu Seong-Pil;Oh Youn-Keun;Choung Kwang-Ok
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.699-709
    • /
    • 2005
  • This study aimed at improving the $TiO_2$ photocatalytic degradation of HA. In this study, the Degradation of Humic Acid using Jeju Scoria Coated with $WO_3/TiO_2$ in the presence of UV irradiation was investigated as a function of different experimental condition : photocatalyst dosage, $Ca^{2+}\;and\;HCO_{3}_{-}$ addition and pH of the solution. Photodegradation efficiency increased with increasing photocatalyst dosage, the optimum catalyst dosage is 2.5 g/L and Photodegradation efficiency is maximized to $WO_3/TiO_2=3/7$. This indicates that $WO_3$ retains a much higher Lewis surface acidity than $TiO_2,\;and\;WO_3$ has a higher affinity for chemical species having unpaired electrons. The addtion of cation($Ca^{2+}$) in water increased the photodegradaion efficiency. But the addtion of $HCO_{3}^{-}$ ion in water decreased a photodegradation efficiency. Photodegradation efficiency increased with decreasing pH < pzc, the electrostatic repulsion between the HA and the surface of $TiO_2$ decreased.

Development of the Functional Films Coated with Nano-TiO2 Particles for Food Packaging and Removal of Off-flavor from Soybean Sprouts (나노 TiO2를 적용한 식품 포장 필름 개발 및 콩나물의 이취 제거)

  • Choi, Yeonwook;Jeon, Kyu Bae;Song, Kihyeon;Kim, Jai Neung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.733-737
    • /
    • 2015
  • For testing the ultraviolet (UV)-blocking property of functional films coated with Nano-$TiO_2$ particles, UV-Vis spectra of oriented polypropylene (OPP) films uncoated and coated with $TiO_2$ of 3% and 5% in Polyurethane (PU) and polyvinyl butyral (PVB)-Cellulose binders were measured. The result of UV-Vis analyses showed that the film coated with 5% $TiO_2$ in PVB binders had a significant effect on UV protection of 90% compared with the film uncoated. Also The result of The photodegradation of methylene blue (MB), OPP films coated with 5% in both PU and PVB binders had a high photocatalytic activity for MB degradation. To evaluate the effect of the developed functional film coated with Nano-$TiO_2$ particles, fresh soybean sprouts were used. Nano-$TiO_2$ coated film was observed to decompose the off-flavor produced by soybean sprouts within packages during distribution, but uncoated film did not. Therefore, Nano-$TiO_2$ coated film package could give the greatest effect in extending the shelf life of soybean sprouts.

Oxidation of Organic Compounds Using $TiO_2$ Photocatalytic Membrane Reactors ($TiO_2$ 광촉매 막반응기를 이용한 유기물의 산화)

  • 현상훈;심세진;정연규
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.152-162
    • /
    • 1994
  • The photodegradation efficiency of formic acid on $TiO_2$ photocatalytic membranes was investigated. A new titania membrane reactors for purification of water combining microfiltration with photocatalytic degradation of organic compounds were developed. Titania membrane tubes(average pore size of $0.2\mu m$) were prepared by the slip casting, and porous thin films of $TiO_2$ were formed on the tube surface by the sol-gel process to increase the surface area, and consequently to increase photodegradation efficiency of organic compounds. The UV light with the wavelength of 365 nm was used as a light source for photocatalytic reactions. The photodegradation efficiency of the organic compounds was strongly dependent on the flux of the solution, the microstructure of the membrane (sol pH), and the amount of $O_2$ supplied. The effects of the primary oxidant such as $H_2O_2$ and dopants such as $Nb_2O_5$ on the photodegradation efficiency were also investigated. The results showed that more than 80% of formic acid could be degraded using membrane coated with a $TiO_2$ sol of pH 1.45. The photodegradation efficiency could be improved by about 20% when adding $H_2O_2$ in feed solution or doping $TiO_2$ membranes with $Fe_2O_3$.

  • PDF

Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements (전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조)

  • Lee K.;Lee N. H.;Shin S. H.;Lee H. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.

The Photocatalytic Decomposition of Isopropylalcohol(IPA) Using Plastic Optical Fiber(POE) Coated Photocatalyst (광촉매가 코팅된 플라스틱 광섬유를 이용한 Isopropylalcohol 광분해 반응)

  • 홍지녀;하진욱;주현규
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.214-217
    • /
    • 2003
  • 본 연구에서는 IPA(isopropyl alcohol)를 분해물질로 선정하여 플라스틱 광섬유(Plastic Optical Fiber, POF)에 TiO₂ 를 코팅하여 오염물질을 분해하였다. P-25가 코팅된 POF의 표면은 유기계, 무기계, 유ㆍ무기 바인더를 사용한 것 모두 깨끗하였고, 무기계 바인더를 사용하여 코팅한 POF는 부착력이 현저히 떨어졌다. IPA분해 결과, 무기계 바인더를 사용한 경우, 다른 종류의 바인더와는 다르게 IPA의 초기농도 값이 매우 작게나왔는데 이러한 결과는 반응기에 주입된 IPA가 평형이 될 때까지 기다리는 동안 흡착이 일어났기 때문으로 생각된다. 유기계 바인더를 사용하여 코팅한 POF는 IPA 분해 효율이 매우 저조하였고 유ㆍ무기 바인더를 사용하여 코팅한 POF의 IPA분해 효율은 우수하였다. P-25와 IPA의 분해 효율이 우수한 유ㆍ무기 바인더의 비율을 10 : 10, 10 : 8, 10 : 6, 10 : 4, 10 : 2로 바꾸어 IPA를 분해한 결과, P-25와 유 ㆍ 무기 바인더의 비율이 10 : 2 일 매 IPA 분해 효율이 가장 우수하였다. 또한 P-25와 코팅액 제조 시 희석제로 사용되는 에탄올의 질량비를 1 : 7, 1 : 11, 1: 15로 바꾸어 IPA를 분해한 결과, P-25와 에탄올의 비율이 1 : 15일 때 IPA분해 효율이 가장 우수하였다.

  • PDF

Synthesis and Photoactivity of SnO2-Doped TiO2 Thin Films (SnO2가 도핑된 TiO2 박막의 합성 및 광촉매 효과)

  • Jung, Mie-Won;Kwak, Yun-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.650-654
    • /
    • 2007
  • [ $SnO_2$ ]-doped $TiO_2$ thin films were prepared from tin (IV) bis (acetylacetonate) dichloride and titanium diisopropoxide bis (acetylacetonate) with pluronic P123 or degussa P25 as a structural-directing agent. These hydrolyzed sol were spin coated onto Si(100) wafer substrate. The microstructure, morphology and bonding states of thin films were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of these films was investigated by using indigo carmine solution.

The Photocatalytic Decomposition of Isopropylalcohol(IPA) Using Plastic Optical Fiber(POE) Coated Photocatalyst (광촉매가 코팅된 플라스틱 광섬유를 이용한 Isopropylalcohol 광분해 반응)

  • 홍지녀;하진욱;주현규
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.343-346
    • /
    • 2003
  • 본 연구에서는 IPA(isopropyl alcohol)를 분해물질로 선정하여 플라스틱 광섬유(Pastic Optical Fiber, POF)에 TiO₂를 코팅하여 오염물질을 분해하였다. P-25가 코팅된 POF의 표면은 유기계, 무기계, 유ㆍ무기 바인더를 사용한 것 모두 깨끗하였고, 무기계 바인더를 사용하여 코팅한 POF는 부착력이 현저히 떨어졌다. IPA 분해 결과, 무기계 바인더를 사용한 경우, 다른 종류의 바인더와는 다르게 IPA의 초기농도 값이 매우 작게나왔는데 이러한 결과는 반응기에 주입된 IPA가 평형이 될 때까지 기다리는 동안 흡착이 일어났기 때문으로 생각된다. 유기계 바인더를 사용하여 코팅한 POF는 IPA 분해 효율이 매우 저조하였고 유ㆍ무기 바인더를 사용하여 코팅한 POF의 IPA 분해 효율은 우수하였다. P-25와 IPA의 분해 효율이 우수한 유ㆍ무기 바인더의 비율을 10 : 10 : 8, 10 : 6, 10 : 4, 10 : 2로 바꾸어 IPA를 분해한 결과, P-25와 유ㆍ무기 바인더의 비율이 10 : 2일 때 IPA 분해 효율이 가장 우수하였다. 또한 P-25와 코팅액 제조 시 회석제로 사용되는 에탄올의 질량비를 1 : 7, 1 : 11, 1 : 15로 바꾸어 IPA를 분해한 결과, P-25와 에탄올의 비율이 1 : 15 일 때 IPA 분해 효율이 가장 우수하였다.

  • PDF

New Photocatalytic Systems for Air Purification (신 개념의 광촉매 응용 공기정화시스템)

  • Ha, Jin-Wook;Kim, Hak-Soo;Han, Chul-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.347-349
    • /
    • 2003
  • Photoelectrocatalytic system is based on the idea that the photogenerated electrons in a layer of TiO$_2$ would move toward a cathode with application of high voltage across the TiO$_2$ coated aluminum plate. In this system, aluminum plate is used as a substrate for TiO$_2$ and also serves as a cathode. According to our scheme, moving photogenerated electrons toward a cathode would have the same effect as moving these electrons away from the holes, which would have the effect of retarding recombination of photogenerated electrons with holes. Recent experiments on benzene and toluene showed higher rates of removal with high voltage on compared to high voltage off, which supported our scheme partially.

  • PDF

Photocatalysis of o-, m- and p-Xylene Using Element-Enhanced Visible-Light Driven Titanium Dioxide

  • Kim, Jong-Tae;Kim, Mo-Keun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1195-1201
    • /
    • 2008
  • Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide($TiO_2$), in order to make $TiO_2$ effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced $TiO_2$ enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced $TiO_2$ was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced $TiO_2$ was somewhat lower than that with ultraviolet(UV)-light induced unmodified $TiO_2$, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L $min^{-1}$). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.