• 제목/요약/키워드: Photocatalytic systems

검색결과 32건 처리시간 0.026초

Quantitative Evaluation on Photocatalytic Activity of Anatase TiO2 Nanocrystals in Aqueous Solution

  • Jeon, Byungwook;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.96-101
    • /
    • 2015
  • Quantitative evaluation of photocatalytic activity of oxide nanoparticles in aqueous solution is quite challenging in that the kinetic reaction rate is determined by a complicated interplay among various limiting factors such as light scattering and absorption, diffusion and adsorption of reactants in condensed liquid phase, photoexcited charge separation and recombination rate, and the exact nature of active sites determined by detailed morphology and crystallinity of nanocrystals. Here, we present our simple experimental results showing that the kinetic regime of a typical photocatalytic degradation experiment over UV-irradiated $TiO_2$ nanoparticles in aqueous solution is in that dominated by the photoactivity of $TiO_2$ and its concentration. This result lays a firm ground of using the measured kinetic reaction rate in evaluating photocatalytic efficiency of oxide nanocrystals under evaluation.

Degradation of Volatile Hydrocarbons Using Continuous-Flow Photocatalytic Systems with Enhanced Catalytic Surface Areas

  • Jo, Wan-Kuen;Yang, Sung-Hoon;Shin, Seung-Ho;Yang, Sung-Bong
    • Environmental Engineering Research
    • /
    • 제16권2호
    • /
    • pp.91-96
    • /
    • 2011
  • Limited information is available on the degradation of volatile hydrocarbons determined via the use of plate-inserted photocatalytic reactors. This has led to the evaluation of surface areas of cylindrical continuous-flow photocatalytic reactors for the degradation of three selected aromatic hydrocarbons. Three types of reactors were prepared: a double cylinder-type, a single cylindrical-type without plates and a single cylindrical-type with inserted glass tubes. According to diffuse reflectance, FTIR and X-ray diffraction (XRD) spectroscopy, the surface characteristics of a coated photocatalyst were very similar to those of raw $TiO_2$, thereby suggesting that the coated photocatalyst exhibited the same photocatalytic activity as the raw $TiO_2$. The photocatalytic degradation efficiencies were significantly or slightly higher for the single cylinder-type reactor than for the double cylinder-type reactor which had a greater catalytic surface area. However, for all target compounds, the degradation efficiencies increased gradually when the number of plates was increased. Accordingly, it was suggested that the surface area being enhanced for the plate-inserted reactor would elevate the photocatalytic degradation efficiency effectively. In addition, this study confirmed that both initial concentrations of target compounds and flow rates were important parameters for the photocatalytic removal mechanism of these plate-inserted photocatalytic reactors.

Degradation of a Refractory Organic Contaminant by Photocatalytic Systems

  • Kim, Il-Kyu
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.133-139
    • /
    • 2014
  • In this research, the photocatalytic degradation of benzothiophene in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ gel at $500^{\circ}C$ for 1hr. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photocatalytic degradation in most cases follows first-order kinetics. The maximum photodegradation efficiency is obtained with $TiO_2$ dosage of 0.4g/L. The photodegradation efficiency with Pt-$TiO_2$ is higher than pure $TiO_2$ powder. The optimal content value of Pt is 0.5wt.%. Also we investigate the applicability of $H_2O_2$ to increase the efficiency of the $TiO_2$ photocatalytic degradation of benzothiophene. The optimal concentration of $H_2O_2$ is 0.05. The effect of pH is investigated; we obtain the maximum photodegradation efficiency at pH 9. Hydroxy-benzothiophenes and dihydroxy-benzothiophenes are identified as reaction intermediates. It is proposed that benzothiophene is oxidized by OH radical to sequentially form hydroxyl-benzothiophenes, dihydroxybenzothiophenes, and benzothiophenedione.

Modeling and Simulation of the Photocatalytic Treatment of Wastewater using Natural Bauxite and TiO2 doped by Quantum Dots

  • Becheikh, Nidhal;Eladeb, Aboulbaba;Ghazouani, Nejib
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.91-96
    • /
    • 2022
  • The photocatalytic degradation of salicylic acid takes place in several stages involving coupled phenomena, such as the transport of molecules and the chemical reaction. The systems of transport equations and the photocatalytic reaction are numerically solved using COMSOL Mutiphysics (CM) simulation software. CM will make it possible to couple the phenomena of flow, the transport of pollutants (salicylic acid) by convection and diffusion, and the chemical reaction to the catalytic area (bauxite or TiO2 doped by nanoparticles). The simulation of the conversion rate allows to correctly fit the experimental results. The temporal simulation shows that the reaction reaches equilibrium after a transitional stage lasting over one minute. The outcomes of the study highlight the importance of diffusion in the boundary layer and the usefulness of injecting micro-agitation into the microchannel flow. Under such conditions, salicylic acid degrades completely.

부영양화 사전 예방을 위한 휴대용 총인 모니터링 시스템 개발 (Development of a Portable Total-phosphorus Monitoring System for Preventing Eutrophication in Advance)

  • 정동건;김승덕;권순열;이재용;김유성;이준엽;김재건;김세완;공성호;정대웅
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.342-347
    • /
    • 2020
  • In this study, a portable total-phosphorus (TP) monitoring system utilizing a photocatalytic-reaction-based pretreatment method is proposed, fabricated, and characterized. Commercial TP monitoring systems are only used in laboratories because of their complex monitoring procedure, bulk-size, and high-cost. In particular, pretreatment in commercial TP monitoring systems is performed at high temperatures (> 120 ℃) and pressure (> 1.1 kg cm-2) making it difficult to minimize the scale of the systems. The proposed TP monitoring system employs a pretreatment method with a photocatalytic reaction; thus, its size can be reduced, as photocatalytic reactions occur at room temperature and atmospheric pressure. Analytes with various TP concentrations are pretreated using the proposed portable TP monitoring system and are quantitatively measured with an LED and a photodiode.

Photocatalysis of Low Concentration of Gaseous-Phase Benzene Using Visible-Light Irradiated N-doped and S-doped Titanium Dioxide

  • Jo, Wan-Kuen;Kim, Jong-Tae
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.171-176
    • /
    • 2008
  • Studies on visible-light-driven photocatalysis of air pollutants at indoor air quality (IAQ) levels have been limited. Current study investigated visible-light derived photocatalysis with N-doped and S-doped titanium dioxide ($TiO_2$) for the control of benzene at indoor levels. Two preparation processes were employed for each of the two types of photocatalyst: urea-Degussa P-25 $TiO_2$ and titania-colloid methods for the N-doped $TiO_2$; and titanium isopropoxid- and tetraisopropoxide-thiourea methods for the S-doped $TiO_2$. Furthermore, two coating methods (EDTA- and acetylacetone-dissolving methods) were tested for both the N-doped and S-doped $TiO_2$. The two coating methods exhibited different photocatalytic degradation efficiency for the N-doped photocatalysts, whereas they did not exhibit any difference for the S-doped photocatalysts. In addition, the two doping processes showed different photocatalytic degradation efficiency for both the S-doped and N-doped photocatalysts. For both the N-doped and S-doped $TiO_2$, the photocatalytic oxidation (PCO) efficiency increased as the hydraulic diameter (HD) decreased. The degradation efficiency determined via a PCO system with visible-light induced $TiO_2$ was lower than that with UV-light induced unmodified $TiO_2$, which was obtained from previous studies. Nevertheless, it is noteworthy that for the photocatalytic annular reactor with the HD of 0.5 cm, PCO efficiency increased up to 52% for the N-doped $TiO_2$ and 60% for the S-doped $TiO_2$. Consequently, when combined with the advantage of visible light use over UV light use, it is suggested that with appropriate HD conditions, the visible-light-assisted photocatalytic systems can also become an important tool for improving IAQ.

광전자촉매시스템(PECS) 적용을 위한 고효율 광촉매의 제조와 특성 (Preparation and Characterization of High-performance Photocatalyst for Photoelectrocatalytic System (PECS))

  • 박성애;유동식;이지호;도영웅;하진욱
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1302-1307
    • /
    • 2006
  • 본 연구는 고효율의 광촉매 제조와 그것의 환경적 응용에 관한 것이다. 가시광 영역에서도 $TiO_2$와 유사한 빛 흡수와 광분해속도를 갖는 나노 광촉매를 제조하였고, 낮은 온도에서도 활성 높은 rutile상이 형성하는 $TiO_2$ 광촉매를 제조하여 $SiO_2$위에 분산시켰다 또한, 광촉매에 적용 가능한 바인더와 안정한 $TiO_2$ 광촉매 졸을 제조하였다. 이와같은 물질들은 자외선/가시광선 분광광도계, X선 회절분석기, SEM, 광촉매활성 측정과 $TiO_2$ 코팅 표면의 물성으로 평가하였다. 이 결과들은 공기정화를 위하여 POF나 금속판을 이용하는 효율적인 광촉매 시스템에 적용 할 수 있다.

  • PDF

금속이온 치환법으로 제조된 티타니아를 이용한 유기물 분해에 대한 연구 (Study of Degradation of Organic matter using prepared Titania by Metal ions substitution process)

  • 이규환;이동석
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.19-22
    • /
    • 2008
  • In recent years, much attention has been paid to "Photocatalytic oxidation" as an alternative technique, where the pollutants are degraded by UV-irradiation in the presence of a semiconductor suspension such as titanium dioxide. $TiO_2$ is the most often used photocatalyst due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost. 1n this research, the photocatalytic degradation of humic acid, acetaldehyde and methylene blue in $UV/TiO_2$ systems has been stydied. The effect of calcination temperature for manufacturing of $TiO_2$ photocatalysts and type of photocatalysts on photodegradation has been investigated. Photocatalysts with various metal ions(Mn, Fe, Cu and Pt) loading are tested to evaluate the effects of metal ions impurities on photodegradation. The photodegradation efficiency with $Pt-TiO_2$ or $Fe-TiO_2$ or $Cu-TiO_2$ is higher than Degussa P-25 powder. However, the photodegradation efficiency with $Mn-TiO_2$ is lower than Degussa P-25 powder. The photocatalytic properties of the nanocrystals were strongly dependent upon the crystallinity, particle size, standard reduction potential of various transition metal and electronegativity of various transition metal. As a result photocatalysts with various metal ion loading evaluated the effect of photodegradation.

  • PDF

광촉매와 암방전(dark discharge) 복합 시스템을 이용한 VOC의 분해 (Degradation of VOC by Photocatalysts and Dark Discharge Hybrid Systems)

  • 정지훈
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.852-857
    • /
    • 2008
  • 광촉매의 고정화는 광촉매의 이용범위를 넓히기 위해서 매우 중요한 기술이다. 광촉매를 고정화시키기 위해 티타늄 표면을 양극산화 시켜 $TiO_2$로 전환시킬 수 있다. 양극산화에 의해 제조된 $TiO_2$는 광촉매 활성을 가지고 있으며 표면은 스펀지와 비슷한 형태를 나타내었다. 다양한 초기농도, 습도, 방전전압 하에서 양극산화에 의해 티타니아를 제조 이를 이용하여 기상의 아세트알데히드와 VOC의 광촉매 분해반응을 연구하였다. 양극산화 티타니아의 반응성은 상대습도가 증가함에 따라 증가하였으나 너무 높은 습도는 반응성을 감소시켰다. 광촉매 반응과 전기 방전을 결합시키면 VOC 제거효율이 크게 증가 되었으나, 과도한 전압을 가하여 코로나 방전이 발생되면 반응속도가 오히려 감소되었다. 최적 상대습도는 40%였으며 최적 방전전압은 암방전 영역인 5 kV였다.

상온 방전 플라즈마-광촉매(Mn-Ti-MCM-41) 복합 시스템에 놓인 고농도 톨루엔의 분해성능 (High Concentrated Toluene Decomposition by Non-thermal Plasma-Photocatalytic (Mn-Ti-MCM-41) Hybrid System)

  • 반지영;손연희;이성철;강미숙;정석진;성준용
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.413-421
    • /
    • 2005
  • 저온 플라즈마 반응과 광촉매 반응을 복합적으로 사용하여 휘발성 유기화합물(Volatile Organic Compounds)의 일종인 고농도(1000 ppm) 톨루엔의 분해에 대한 연구를 수행하였다. 사용된 촉매는 균일한 기공크기를 갖는 hexagonal 형태의 Mn-Ti-MCM-41 촉매로서, 수열 합성법으로 합성하였고, XRD, XPS, TEM, BET/ICP, $NH_3$/Toluene-TPD 등의 특성 분석을 통해서 톨루엔의 분해반응에 적절한 촉매임을 확인할 수 있었다. 상온($20^{\circ}C$)에서 반응을 실시하였고, 반응기에 인가된 전압은 9.0 kV로 고정하였다. 실험결과, 플라즈마 단독 시스템에서 톨루엔의 분해반응을 실시하였을 때 광촉매 단독 시스템에서 보다 40% 이상 활성이 향상되었다. 그러나 플라즈마 단독 시스템에서는 페놀, $C_2{\sim}C_4$의 알켄류 등의 부생성물의 발생량이 증가하였다. 한편, 플라즈마-광촉매 복합 시스템에서 톨루엔의 분해를 실시하였을 경우, 부생성물의 발생량이 현저하게 줄어들었다. 한편, 플라즈마-광촉매 복합 시스템에서 톨루엔의 분해를 실시하였을 경우, 부생성물의 발생량이 현저하게 줄어들었다. 특히, Mn5mol%-Ti-MCM-41 촉매를 사용하였을 경우 분해된 톨루엔의 농도 800 ppm 중에서 $CO_2$로의 전환율은 43.9%로 다른 촉매들에 비해 가장 높은 선택도를 보였다. 이는 플라즈마-광촉매 복합 시스템이 톨루엔의 분해 반응에 있어서 광촉매 반응이나 플라즈마 단독 반응에 비해 효과적임을 알 수 있었다.