• 제목/요약/키워드: Photocatalytic reduction

검색결과 94건 처리시간 0.033초

Effects of Partial Substitution of W for Ti in Titanium Dioxide

  • Lee, Eun-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.68-71
    • /
    • 2011
  • [ $Ti_{1-x}W_xO_{2-y}$ ]solid solutions with compositions of x = 0.01(TW-1), x = 0.02(TW-2), x = 0.03(TW-3) and x = 0.04(TW-4) were prepared at 1,073 K in air under atmospheric pressure. All the solutions exhibited tetragonal symmetries. Nonstoichiometric chemical formulas have been obtained from oxidation-reduction titration and the partial substitution of $W^{6+}$ ions mainly caused the formation of $Ti^{3+}$ ion, rather than oxygen excess. Resistivities of the samples were highly dependent on humidity. The increase of the W amount resulted in an increase of $Ti^{3+}$ content, decrease of resistivity values and finally degradation of photocatalytic activities.

금속이온 치환법으로 제조된 티타니아를 이용한 유기물 분해에 대한 연구 (Study of Degradation of Organic matter using prepared Titania by Metal ions substitution process)

  • 이규환;이동석
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.19-22
    • /
    • 2008
  • In recent years, much attention has been paid to "Photocatalytic oxidation" as an alternative technique, where the pollutants are degraded by UV-irradiation in the presence of a semiconductor suspension such as titanium dioxide. $TiO_2$ is the most often used photocatalyst due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost. 1n this research, the photocatalytic degradation of humic acid, acetaldehyde and methylene blue in $UV/TiO_2$ systems has been stydied. The effect of calcination temperature for manufacturing of $TiO_2$ photocatalysts and type of photocatalysts on photodegradation has been investigated. Photocatalysts with various metal ions(Mn, Fe, Cu and Pt) loading are tested to evaluate the effects of metal ions impurities on photodegradation. The photodegradation efficiency with $Pt-TiO_2$ or $Fe-TiO_2$ or $Cu-TiO_2$ is higher than Degussa P-25 powder. However, the photodegradation efficiency with $Mn-TiO_2$ is lower than Degussa P-25 powder. The photocatalytic properties of the nanocrystals were strongly dependent upon the crystallinity, particle size, standard reduction potential of various transition metal and electronegativity of various transition metal. As a result photocatalysts with various metal ion loading evaluated the effect of photodegradation.

  • PDF

Photocatalytic activity enhancement of TiO2 with adding Zn particles

  • Seo, Hyeon Jin;Boo, Jang Heon;Jang, Hyun Woo;Kim, Mi Jeong;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.162-165
    • /
    • 2016
  • APhotocatalysis process uses ambient oxygen from air and irradiation, fundamentally UV light, to generate oxidation and reduction which can degrade almost all harmful organic and inorganic compounds to nontoxic substances. This study was focused on enhancement of photocatalytic activity which improves the photocatlytic efficiency with $TiO_2$ particle by mixing of certain amounts of Zn particles. We analyzed degradation of organic pollutant materials such as toluene and phenol with the mixed photocatalysis by using UV-visible spectrophotometer and obtained a result that photocatalytic activity is increased with increasing amount of Zn particle. Especially, in the case of $TiO_2$ (1 mmol) and Zn (0.1 mmol) mixture photocatalyst, we obtained at least 2 times higher photocatalytic activity compared with the commercially available $TiO_2$ photocatalyst (Degussa P-25), indicating that our mixed photocatalyts (Zn-doped $TiO_2$) is very effective of removing both organic dye and pollutants and the conversion rate of toluene is much faster than that of phenol.

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • 남상훈;김명화;부진효
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

기공형 polyethersulfone/TiO2 복합체 멤브레인의 유기염료분해 반응에 대한 광촉매 특성 연구 (A Study on the Photocatalytic Decomposition of Organic Dyes by Porous Polyethersulfone/TiO2 Composite Membrane)

  • 송창현;진영읍;이원기;유성일
    • 공업화학
    • /
    • 제34권1호
    • /
    • pp.51-56
    • /
    • 2023
  • 광촉매 기반의 수처리 공정에서 TiO2 나노입자와 기공형 고분자로 구성된 복합체 멤브레인은 광촉매 반응후 나노입자를 회수하기 용이하다는 장점과 멤브레인 파울링(fouling) 억제가 가능하다는 측면에서 다양하게 연구되어 왔다. 하지만, TiO2 나노입자가 복합체 멤브레인에 고착된 이후 나노입자의 광촉매 특성이 어떻게 변할지에 대한 연구는 상대적으로 많이 진행되지 않았다. 이러한 측면에서, 본 연구에서는 polyethersulfone (PES)/TiO2 복합체 멤브레인을 제조하고 유기염료분해 반응에 대한 광촉매 특성을 연구하였다. 복합체 멤브레인에 고착된 TiO2 나노입자의 염료분해반응 속도를 콜로이드 상에서 분산된 TiO2 나노입자와 비교함으로써 멤브레인에 고착화되기 전후의 TiO2 나노입자의 촉매 효율을 비교하였다.

금속담지된 $TiO_2$ 나노튜브를 활용한 Cr(VI)환원의 광화학적 효율 연구 (Study on Photocatalytic Cr(VI) Reduction with Metal Deposited Anodized $TiO_2$ Tube)

  • 허아영;이창하;박민성;심은정;윤재경;주현규
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.301-306
    • /
    • 2010
  • The present work is performed to photocatalytically reduce Cr(VI) by means of metal deposited anodized $TiO_2$ tubes, which are prepared by anodization of Ti foil followed by metal deposition. Stably immobilized photo-reactive materials are favored in the field of detoxification in a conventional aqueous medium, preventing gradual loss of efficiency and process malfunction due to detachment of the materials. The prepared samples are characterized by SEM, TEM, EDAX, and photocurrent. The metal deposited-$TiO_2$ electrode shows higher efficiency for Cr(VI) reduction (ca. 20%) and higher ability for adsorption (4~5 times) than pure one.

Change in the photocatalytic activity of ZnO nanoparticles by additive H2O

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Choi, Jin-Woo;Kim, Min-Hee;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.285-285
    • /
    • 2010
  • Zinc oxide (ZnO) is a direct band gap semiconductor with 3.37 eV, which has in a hexagonal wurtzite structure. ZnO is a good candidate for a photocatalyst because it has physical and chemical stability, high oxidative properties, and absorbs of ultraviolet light. During ZnO is irradiated by UV light, redox (reduction and oxidation) reactions will occur on the ZnO surface, generating the radicals O2- and OH. These two powerful oxidizing agents have been proven to be effective in decomposition of harmful organic materials, converting them into CO2 and H2O. Therefore, we assume that oxygen on the surface of ZnO is a very important factor in the photocatalytic activities of ZnO nanoparticles. Recently, ZnO nanoparticles are studied in various application fields by many researchers. Photocatalyst research is progressing much in various application fields. But the ZnO nanoparticles have disadvantage that is unstable in water in comparison titanium dioxide (TiO2). The Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoaprticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their phtocatalytic activity changes. The characterization of ZnO nanoparticles were analyzed by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and BET test. Also we defined the photocatalytic activity of ZnO nanoparticles using UV-VIS Spectroscopy. And we explained changing of photocatalytic activity after the water treatment using X-ray Photoelectron Spectroscopy (XPS).

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF