• Title/Summary/Keyword: Photocatalytic

Search Result 1,096, Processing Time 0.029 seconds

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

Photomineralisation of Reactive Black 5 with ZnO using Solar and UV-A Light (태양광과 UV-A 빛 하에서 ZnO 을 이용한 Reactive Black 5의 광분해작용)

  • Amisha, S.;Selvam, K.;Sobana, N.;Swaminathan, M.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • The photocatalytic degradation of a textile diazo dye in aqueous solution has been investigated under Solar and UV-A light. The effect of various parameters such as concentration of dye, amount of catalyst and pH on the degradation of dye has been studied. Addition of hydrogen peroxide, ammonium persulphate and isopropanol strongly influences the degradation rate. Kinetic analysis of photodegradation reveals that the degradation follows approximately pseudo first order kinetics according to the Langmuir-Hinshelwood model. Carbon dioxide, nitrate and sulphate ions have been identified as mineralisation products. The photocatalyst ZnO was found to be more efficient in UV-A light than in Solar light.

The photocatalytic water splitting into $H_2$ and $O_2$ mimicking a Z-scheme mechanism (광합성을 모사한 광촉매 물분해 수소 제조)

  • Jeon, Myung-Seok;Hong, Joon-Gi;Chun, Young-Gab;Choi, Ho-Suk
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.29-35
    • /
    • 2003
  • We studied the water splitting into $H_2$ and $O_2$ using two different semiconductor photo catalysts and redox mediator, mimicking the Z-scheme mechanism of the photosynthesis, $H_2$ evolution took place on a Pt-$SrTiO_2$ (Cr-Ta doped) photocatalyst using $I^-$ electron donor under the visible light irradiation. The Pt-$WO_3$ photocatalyst showed an excellent activity of the $O_2$ evolution using $IO_3^-$ electron acceptor under visible light. $H_2$ and $O_2$ gases evolved in the stoichiometric ratio($H_2/O_2$=2) under visible light using a mixture of the Pt-$WO_3$ and Pt-$SrTiO_3$ (Cr-Ta doped) suspended in NaI aqueous solution. We proposed a two-step photo-excitation mechanism using redox mediator under the visible irradiation.

Removal of Benzene and Toluene by Photo-catalyst Adsorbent Prepared from MSWI Fly Ash (소각비산재로 제조한 광촉매 흡착제의 벤젠과 톨루엔 제거특성)

  • Choi So-Young;Shim Young-Sook;Lee Woo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.431-438
    • /
    • 2005
  • In order to apply the photocatalytic decomposition of aromatic VOCs, adsorbent prepared from MSWI fly ash was coated by $TiO_2$ solution to endow with photo-catalytic function. The effects of coating number, existence of light source and the type of $TiO_2$ solution used for coating were examined. Adsorbent coated with amorphous $TiO_2$ solution showed higher adsorptivity than adsorbent coated with crystal $TiO_2$ solution. Without light source, breakthrough curve of photo -catalyst absorbent for VOCs removal was similar to that of absorbent made from MSWI fly ash. On the other hand, breakthrough time was enlarged with light source and total removal efficiency of benzene and toluene was also increased. It can be explained as photo-decomposition effect of $TiO_2$ photo-catalyst. Total removal efficiency of benzene and toluene was increased according to the increase of coating number with light source. It was due to the effect of adsorption and photo reaction of photo-catalytic adsorbent. But total removal efficiency of benzene was lower than that of toluene. Because benzene was removed more effectively than toluene by adsorption, but photo - decomposition effect oi toluene was more high than benzene.

Hydrothermally synthesized Al-doped BiVO4 as a potential antibacterial agent against methicillin-resistant Staphylococcus aureus

  • Vicas, Charles Sundar;Keerthiraj, Namratha;Byrappa, Nayan;Byrappa, Kullaiah
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.566-571
    • /
    • 2019
  • One-pot hydrothermal route was adopted to synthesize Al:BiVO4, at 4 h and 8 h reaction durations, by adding 1% aluminiumoxide powder (w/v) to the precursors. The products were investigated using several characterization techniques that conform a significant morphological change and a decrease in bandgap energy of the materials upon Al modification of scheelite monoclinic bismuth vanadate matrix at both hydrothermal durations. Antibacterial experiments were performed against methicillin-resistant Staphylococcus aureus in visible light condition to harness the photoxidation property of Al-doped BiVO4 and compare to that of unaltered BiVO4. Minimum inhibitory concentration of the synthesized materials was identified. The results indicate that Al-doping on BiVO4 has a significant effect on its photocatalytic antibacterial performance. Al:BiVO4 synthesized at 8 h hydrothermal treatment parades excellent sunlight-driven photocatalysis compared to the one synthesized at 4 h.

The effect of introduced method of titania and applied potential on the photoelectrocatalytic properties of CNT/TiO2 electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • In this paper, three types of CNT/$TiO_2$ composite electrodes were prepared with different methods. The changes in XRD patterns showed that the Electrode A contained a mixed phase of anatase and rutile while the Electrode B and Electrode C contained a typical single and clear anatase crystal structure. From SEM micrographs, $TiO_2$ particles were adhered on the surface of the CNT network in the forms of small clusters. The results of chemical elemental analysis indicated that the main elements such as C, O and Ti were existed. The results demonstrated that the efficiency of photoelectrocatalytic (PEC) oxidation for methylene blue (MB) was higher than that of photocatalytic (PC) oxidation. There was a clear enhancement trend of the MB degradation using the prepared CNT/$TiO_2$ composite electrodes with an increase of applied potential. Finally, the prominent PEC activities of the CNT/$TiO_2$ composites could be attributed to combination effects of photo-degradation of $TiO_2$, electron assistant of CNT and function of applied potential.

Synthesis of N-doped Titania using Ammonium Hydroxide and Photocatalytic Degradation of Humic Acid (암모니아수를 이용한 N-doped TiO2 제조 및 부식산의 광촉매 분해)

  • Cho, A-Young;Nam, Yun-Seon;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.95-102
    • /
    • 2012
  • To advance luminance efficiency of Titania at visible range, N-doped $TiO_2$ was prepared by using ammonium hydroxide as a source of nitrogen. The photoactivities of the synthesized $TiO_2$ were evaluated on the basis of degradation of humic acid in aqueous solutions with different light sources, UV-C, UV-A and fluorescent lamp. As a result, at UV-C is high efficiency $UV_{254}$ decrease and TOC removal. In this study, the best synthetic conditions of N-doped $TiO_2$ were 5.0 M of ammonium hydroxide concentration and calcination temperature of $550^{\circ}C$. The degradation rate of humic acid as an evaluation of photoactivities of the catalysts were conducted with pH variation, decrease rate of molecular absorption, removal rate of total organic carbon and fluorescece evolution for humic acid solution. XRD and SEM were applied for analysis of surface analysis of the catalysts.

  • PDF

Characteristic of Degradation of Humic Acid using Jeju Scoria Coated with WO3/TiO2 Photocatalyst (제주 Scoria에 코팅된 WO3/TiO2 광촉매를 이용한 Humic Acid의 광분해 특성)

  • Ryu Seong-Pil;Oh Youn-Keun;Choung Kwang-Ok
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.699-709
    • /
    • 2005
  • This study aimed at improving the $TiO_2$ photocatalytic degradation of HA. In this study, the Degradation of Humic Acid using Jeju Scoria Coated with $WO_3/TiO_2$ in the presence of UV irradiation was investigated as a function of different experimental condition : photocatalyst dosage, $Ca^{2+}\;and\;HCO_{3}_{-}$ addition and pH of the solution. Photodegradation efficiency increased with increasing photocatalyst dosage, the optimum catalyst dosage is 2.5 g/L and Photodegradation efficiency is maximized to $WO_3/TiO_2=3/7$. This indicates that $WO_3$ retains a much higher Lewis surface acidity than $TiO_2,\;and\;WO_3$ has a higher affinity for chemical species having unpaired electrons. The addtion of cation($Ca^{2+}$) in water increased the photodegradaion efficiency. But the addtion of $HCO_{3}^{-}$ ion in water decreased a photodegradation efficiency. Photodegradation efficiency increased with decreasing pH < pzc, the electrostatic repulsion between the HA and the surface of $TiO_2$ decreased.

Photodegradation of Rhodamine B in $TiO_2$ suspension

  • Na, Young-Soo;Kim, Ji-Hye;Lee, Tae-Kyung;Lee, Song-Woo;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.149-155
    • /
    • 2001
  • In recent years, rapid technological advances in the textile and dyeing industry have yielded benefits to society but have also generated new and significant environmental problems. The treatment alternatives applicable for the removal of color vary, depending upon the type of dye wastewater Advanced oxidation processes are considered to provide more permanent merits. One of these oxidation treatments attracting much attention is photocatalytic oxidation, which uses TiO$_2$ due to its non-toxic, insoluble liquid as well as a highly reactive nature under UV irradiation. This study sets out to demonstrate the effect of photocatalyst dosage, dye concentrations, pH and light intensity on color removal efficiency under aerobic conditions. The results of this study show Rhodamine B(RhB) was not decolorized when a dye solution was exposed only to air or treated by TiO$_2$ only In the presence of both TiO$_2$ and UV light, however, the presence of RhB decreased up to 95 % within 60minutes. The more addition TiO$_2$ and the more diluted dye solution, showed a higher removal rate.

  • PDF

A Study on Water Advanced Water Treatment by Photochemical Reaction (광화학 반응을 이용한 고도 수처리에 관한 연구)

  • Kim Min-Sik;Sung Dae-Dong
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.699-704
    • /
    • 1999
  • The Photodegradation efficient of total organic compounds in the drinking water has been studied using the methods of photocatalytic reaction and laser beam irradation. The results are summarized as follows; 1. The photodegradation efficiency of total organic compounds shows as $50\%\;to\;80\%$ as within one hour and after this the efficiency is decreased slowly. 2. The photodegradation efficiency of total organic compounds shows as 65 to $90\%$ within 3.3min. when Nd : YAG beam is irradiated to the water layer. 3. An excellent observation of the organic compound removal efficiency gives revealed in that case of the longest wavelength of 532nm is irradiated among the three kinds of laser beam sources of 532nm, 355nm and 266nm. 4. The organic compound removal efficiency shows high in the case of UV beam irradiation in the thin layer of water. However the efficiency is not depended on the thickness of water layer severely. 5. The removal efficiency of the organic compounds in the direct irradiation shows higher than the indirect irradiation in the case of UV beam, but the efficiency is not depended on the direction of irradiation in the case of Nd : YAG beam irradiation.

  • PDF