• Title/Summary/Keyword: Photocatalytic

Search Result 1,096, Processing Time 0.024 seconds

The Synergistic Effect of Nitrogen and Ni2O3 over TiO2 Photocatalyst in the Degradation of 2,4,6-Trichlorophenol Under Visible Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4052-4058
    • /
    • 2012
  • The composite photocatalyst, N-$TiO_2$ loaded with $Ni_2O_3$, was prepared by $N_2$ plasma treatment. X-ray diffraction, X-ray fluorescence, $N_2$ adsorption, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. The results indicated that the band gap energy was decreased obviously by nitrogen doping, whereas loading of $Ni_2O_3$ did not influence the band gap and visible light absorption. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. The photocatalytic activity and stability of composite photocatalyst were much higher than that of catalyst modified with nitrogen or $Ni_2O_3$ alone. The synergistic effect of doping nitrogen and $Ni_2O_3$ over $TiO_2$ was investigated.

Experimental Evidence of the Mobility of Hydroperoxyl/Superoxide Anion Radicals from the Illuminated TiO2 Interface into the Aqueous Phase

  • Kwon, Bum-Gun;Yoon, Je-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.667-670
    • /
    • 2009
  • The understanding of behaviors of hydroperoxyl/superoxide anion radicals (${H_2O_2}^./{O_2}^{-.}$) generated from a photoirradiated $TiO_2$ surface is essential to improve the efficiency of $TiO_2$ photocatalytic reactions by decreasing the recombination of photoinduced electron-hole ($e^--h^+$) pairs. In contrast with previous studies, we found that ${H_2O_2}^./{O_2}^{-.}$ generated on the surface of illuminated $TiO_2$ particles are mobile. ${H_2O_2}^./{O_2}^{-.}$ formed by the photocatalysis of $TiO_2$ particles immobilized onto the inner surface of a coil-quartz tube were forced under a continuous flow through a knotted tubing reactor (KTR) and into the aqueous phase completely separated from the $TiO_2$ particles, and were measured by a chemiluminescence (CL) technique using 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[ 1,2-a]pyrazin-3-one (MCLA) as the reagent. The initial concentration of the ${H_2O_2}^./{O_2}^{-.}$ stream entering the KTR was determined by its half-life (98 s) at pH 5.8. We suggests that the efficiency of $TiO_2$ photocatalytic reactions may be further improved by utilizing the mobility of ${H_2O_2}^./{O_2}^{-.}$.

Microstructure and Growth Behaviors of Ti Anodic Oxide Film for Photocatalysis (광촉매용 Ti 양극산화 피막의 조직 및 성장거동)

  • Jang, Jae-Myeong;Oh, Han-Jun;Lee, Jong-Ho;Cho, Su-Haeng;Chi, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.353-358
    • /
    • 2002
  • The microstructure and growth behaviors of anodic oxide layers on titanium were investigated. $TiO_2$ oxide films were prepared by anodizing at constant voltages of 180 and 200V in sulfuric acid electrolyte. The anodic $TiO_2$ layer formed at 200V showed a cell structure with more irregular pore shapes around the interface between the anodic oxide layer and the substrate titanium compared with that formed at 180V. Irregular shape of pores at the initial stage of anodization seemed to be attributed to spark discharge phenomena which heavily occurred during increasing voltages. The thickness of the anodic oxide film increased linearly at a rate of $1.9{\times}10^{ -1}\mu\textrm{m}$/min. The oxide layers formed at 180 and 200V were composed mainly of anatase structure, and the anodizing process could be suggested as one of fabrication methods of photocatalytic $TiO_2$.

A Study on the Removal of LAS using TiO2 Photocatalyst (TiO2 광촉매를 이용한 LAS의 제거에 관한 연구)

  • 김효정;오윤근;류성필
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.757-763
    • /
    • 2002
  • The objective of this study is to delineate removal efficiency of the Linear alkylbenzene sulfonates(LAS) in solution by $TiO_2$ photocatalytic oxidation as a function of the following different experimental conditions : initial concentration of LAS, $TiO_2$ concentration, UV wavelength and pH of the solution. It was increased with decreasing initial concentration of LAS and with decreasing pH of the solution. Removal efficiency increased with increasing $TiO_2$ concentration but was almost the same at $TiO_2$ concentration of 2 g/L and 3 g/L, i.e., for initial LAS concentration of 50 mg/L. It was removal efficiency was 85% at 150 min in the case of $TiO_2$ concentration of 0.5 g/L but 100% after 150 min in the case of $TiO_2$ concentration of 1 g/L, 100% after 110 min in the case of $TiO_2$ concentration of 2 g/L and 3 g/L. UV wavelength affection on the removal efficiency of LAS decreased in the order of 254, 312 and 365 nm as increasing wavelength. But the removal efficiency of LAS was nearly the same at UV wavelength of 254 nm and 312 nm.

Manufacturing and Characterization of N-doped TiO2 Photocatalytic Thin Film (N 도핑된 TiO2 광촉매 박막의 제조 및 특성분석)

  • Park, Sang-Won;Nam, Soo-Kyung;Heo, Jae-Eun
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.683-688
    • /
    • 2007
  • In this study, N doped $TiO_2$ (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, $O_2\;and\;N_2$) were used and Ti target was impressed by 1.2 kW -5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of $TiO_2$ and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of $TiO_2$ thin film on visible radiation was shown little efficiency but TiO-N was about 18%.

Photocatalytic Properties of TiO2 According to Manufacturing Method (제조방법에 따른 TiO2의 광촉매 특성 분석)

  • Lee, Hong Joo;Park, Yu Gang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.156-161
    • /
    • 2018
  • $TiO_2$ photocatalyst powders were prepared by chlorination method and sol-gel method. Specific surface area and crystalline (i.e., anatase and rutile) of the catalyst varied depending on manufacture conditions and method. TTIP-sol photocatalyst had higher methylene blue (MB) decomposition characteristics than photocatalyst from chlorination method and TBOT-sol. MB removal efficiency from aqueous solution with TTIP-sol photocatalyst was over 90%. Experimental results showed that the $TiO_2$ photocatalyst with a single anatase phase and a large specific surface area had high decomposition characteristics of organic materials.

Photocatalytic Effect for TiO2/ACF Composite Electrochemically Prepared with TNB Electrolyte

  • Chen, Ming-Liang;Lim, Chang-Sung;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • [ $TiO_2$ ]ACF composites were prepared by the electrochemical method with Titanium (IV) n-butoxide (TNB) electrolyte under different electrochemical operation time. The BET surface area for $TiO_2$/ACF composites decrease with the increase of electrochemical operation time. There is a single crystal structure which is anatase in all of the samples from the data of XRD. The SEM micrphotographs of $TiO_2$/ACF composites show that the $TiO_2$ particles were well mixed with the ACF. There are O and P with strong C and Ti peaks in all samples from EDX results, and it also shows that a decrease of the C content with a increasing of Ti content with increasing of the electrochemical operation time in the over all composites. DSC cures show that the exothermic peak of all composites at $560^{\circ}C$ represents the transformation heat of amorphous parts to anatase phase and the discontinuous grain growth of the transformed anatase particles. Finally, the excellent photoactivity of $TiO_2$/ACF composites (especially, ACFT10) could be attributed that the decrease of concentration of MB can be concluded to be much faster for the adsorption by ACF than for photocatalytic decomposition by $TiO_2$.

Photocatalytic Oxidation for Organic Dye using Phenol Resin-based Carbon-titania Composites

  • Oh, Won-Chun;Na, Yu-Ri
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon/$TiO_2$ composite photocatalysts were thermally synthesized with different mixing ratios of anatase to phenol resin through an ethanol solvent dissolving method. The XRD patterns revealed that only anatase phase can be identified for Carbon/$TiO_2$ composites. The diffraction peaks of carbon were not observed, however, due to the low carbon content on the $TiO_2$ surfaces and the low crystallinity of amorphous carbon. The results of chemical elemental analyses of the Carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for carbon and Ti metal than that of any other elements. The BET surface area increases to the maximum value of $488\;m^2/g$ with the area depending on the amount of phenol resin. From the SEM images, small $TiO_2$ particles were homogeneously distributed to a composite cluster with the porosity of phenol resin-based carbon. From the photocatalytic results, the MB degradation should be attributed to the three kinds of synergetic effects, such as photocatalysis, adsorptivity, and electron transfer by light absorption between supporter $TiO_2$ and carbon.

Photocatalytic Degradation of Gaseous Formaldehyde and Benzene using TiO2 Particulate Films Prepared by the Flame Aerosol Reactor

  • Chang, Hyuksang;Seo, Moonhyeok
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Nano-sized $TiO_2$ particles were produced by a premixed flame aerosol reactor, and they were immobilized on a mesh-type substrate in form of particulate film. The reactor made it possible maintaining the original particulate characteristics determined in the flame synthetic process. The particulate morphology and crystalline phase were not changed until the particulate were finally coated on the substrate, which resulted in the better performance of the photocatalytic conversion of the volatile organic compounds (VOCs) in the ultraviolet $(UV)-TiO_2$ system. In the flame aerosol reactor, the various specific surface areas and the anatase weight fractions of the synthesized particles were obtained by manipulating the parameters in the combustion process. The performance of the $TiO_2$ particulate films was evaluated for the destruction of the VOCs under the various UV irradiation conditions. The decomposition rates of benzene and formaldehyde under the irradiation of UV-C of 254 nm in wavelength were evaluated to check the performance of $TiO_2$ film layer to be applied in air quality control system.

The Performance of Photocatalyst filter for an Air Cleaner-Effect of novel metal (공기정화기용 광촉매 필터의 성능-귀금속 담지 영향)

  • Jang, Hyun-Tae;Kim, Jeong-Keun;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1284-1291
    • /
    • 2006
  • This work examined improving the activity of photocatalyts by novel metal doping for the degradation of volatile organic compounds, such as formaldehyde and acetone. The activity was determined with type of dopant novel metal and volatile organic compounds. The palladium-doped $TiO_2$ was found to be improved the decomposition of acetone. The photocatalytic degradation rate for acetone was increased with decreasing temperature to $45^{\circ}C$. The optmum temperature of photocatalytic degradation rate for formaldehyde was $75^{\circ}C$. The enhancement of reaction rate with novel metal were 1.0 wt.% of palladium for acetone, 1.0 wt.% of plaitnum for formaldehyde.

  • PDF