• 제목/요약/키워드: Photocatalytic

검색결과 1,096건 처리시간 0.025초

Fabrication of Photocatalytic TiO2 thin Film Using Aerosol Deposition Method and its Filtration Characteristics (에어로졸 증착법을 이용한 광촉매 TiO2 박막 제조 및 박막의 여과 특성)

  • Choi, Wonyoul;Lee, Jinwoo;Kim, Shijun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • 제11권1호
    • /
    • pp.5-11
    • /
    • 2010
  • The objective of this study is to evaluate the effect of operational parameters such as rotation speed and vibrating milling time for the fabrication of photocatalytic $TiO_2$ thin film using aerosol deposition methods. $TiO_2$ powders produced in the range of 1,000-3,000 rpm of rotation speed of centrifugal separator are ineffective on the fabrication of $TiO_2$ thin film by aerosol deposition due to the problem of nozzle powder jam. $TiO_2$ powders controlled by vibrating milling had about 420 nm of average diameter after 2 hr of vibrating milling time. The result of XRD analysis indicated that $TiO_2$ powders had a anatase phase. Vibrating milling methods was considered to be an effective pre-treatment process for $TiO_2$ powder control. Consequently $TiO_2$ photocatalytic thin film with dispersion of anatase crystallites controled by vibrating milling was successfully fabricated by aerosol deposition. The permeation flux of $TiO_2$ photocatalytic thin film with the immobilized $TiO_2$ powder was higher than that of suspended $TiO_2$ powder. Therefore, $TiO_2$ photocatalytic thin film promises to be one of the effective methods for enhancing filtration performance for the treatment of organic pollutants.

Preparation and Characterization of Photocatalytic Paper for VOCs Adsorption and Oxidation Decomposition (VOC흡착 및 산화분해 특성을 갖는 광촉매종이의 제조 및 특성 평가)

  • Yoo, Yoon-Jong;Kim, Hong-Soo;Jeon, Sang-Ho;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • 제42권1호
    • /
    • pp.56-61
    • /
    • 2005
  • Highly durable photocatalytic paper containing anatase $TiO_{2}$, active carbon and ceramic fiber, which can adsorb VOCs and decompose them by photo oxidation simultaneously, was manufactured and characterized. Optimum concentration of PDADMAC to let $TiO_{2}$ adhere on the surfaces of active carbon and ceramic fiber selectively was $10\~15$ ppm in a slurry mixture for making photocatalytic paper. The thickness and basis weight of the produced catalytic paper by paper-making method were 0.4 mm and 380 $g/m^{2}$, respectively. Adsorption reaction by active carbon and photocatalytic decomposition reaction by $TiO_{2}$ were proceeded simultaneously, by which the abatement rate was found to be greatly enhanced compared to the similar environment with single adsorption reaction or single photocatalytic reaction only. The selective attachment of $TiO_{2}$ on ceramic fiber and active carbon was found to be very effective in preventing decomposition of substrate by the $TiO_{2}$ attack during exposure to UV light.

Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions

  • Yuan, Rongfang;Liu, Dan;Wang, Shaona;Zhou, Beihai;Ma, Fangshu
    • Environmental Engineering Research
    • /
    • 제23권2호
    • /
    • pp.181-188
    • /
    • 2018
  • Photocatalytic oxidation in the presence of Fe-doped, Zn-doped or Fe-Zn co-doped $TiO_2$ was used to effectively decompose humic acids (HAs) in water. The highest HAs removal efficiency (65.7%) was achieved in the presence of $500^{\circ}C$ calcined 0.0010% Fe-Zn co-doped $TiO_2$ with the Fe:Zn ratio of 3:2. The initial solution pH value, inorganic cations and anions also affected the catalyst photocatalytic ability. The HAs removal for the initial pH of 2 was the highest, and for the pH of 6 was the lowest. The photocatalytic oxidation of HAs was enhanced with the increase of the $Ca^{2+}$ or $Mg^{2+}$ concentration, and reduced when concentrations of some anions increased. The inhibition order of the anions on $TiO_2$ photocatalytic activities was $CO{_3}^{2-}$ > $HCO_3{^-}$ > $Cl^-$, but a slightly promotion was achieved when $SO{_4}^{2-}$ was added. Total organic carbon (TOC) removal was used to evaluate the actual HAs mineralization degree caused by the $500^{\circ}C$ calcined 0.0010% Fe-Zn (3:2) co-doped $TiO_2$. For tap water added with HAs, the $UV_{254}$ and TOC removal rates were 57.2% and 49.9%, respectively. The $UV_{254}$ removal efficiency was higher than that of TOC because of the generation of intermediates that could significantly reduce the $UV_{254}$, but not the TOC.

In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor (광촉매 반응기용 세라믹 막에의 TiO2 층 형성과 성능평가)

  • Ahmad, Rizwan;Kim, Jin Kyu;Kim, Jong Hak;Kim, Jeonghwan
    • Membrane Journal
    • /
    • 제27권4호
    • /
    • pp.328-335
    • /
    • 2017
  • Fabricating photocatalytic composite membrane with a mesoporous and tailored morphological structure would have significant implication for environmental remediation. In this study, we reported hybrid $TiO_2$ immobilized photocatalytic membrane and its application for the treatment of dye solution. Photocatalytic film with high porosity and homogeneity was fabricated by graft copolymer as polymer template. Hybridization of membrane filtration with photocatalysis was successfully achieved by photocatalytic membrane reactor developed. Result showed that membrane permeability was significantly reduced after immobilizing the $TiO_2$ film on bare $Al_2O_3$ support. The membrane characterization indicated that well organized $TiO_2$ film was successfully formed on $Al_2O_3$ support. Benefiting from the controlled morphology of $TiO_2$ film, the composite membrane exhibited almost complete degradation of organic dye within 5 h of filtration under UV illumination. Langmuir-Hinshelwood model explained degradation of organic dye. First-order rate constant was approximately six times with $TiO_2$ immobilized composite ceramic membrane, higher than the one with the bare $Al_2O_3$ support (0.0081 vs. $0.0013min^{-1}$).

Treatment of an Authentic Textile-dyeing Wastewater Utilizing a Fluidized Biofilter and Hybrid Recirculating System Composed of the Fluidized Biofilter and a UV/photocatalytic Reactor (실제 혼합염색폐수의 유동상 시스템을 활용한 미생물처리와 하이브리드 재순환시스템처리)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.71-77
    • /
    • 2015
  • A fluidized biofilter was filled with Pseudomonas sp. and Bacillus cereus/thuringiensis-fixed waste-tire crumb media and was run to treat authentic textile-dyeing wastewater mixed with alkaline polyester-weight-reducing wastewater. As a result, its removal efficiency of $COD_{Cr}$ and color were 75~80% and 67%, respectively. In addition, upon constructing hybrid-recirculating system composed of the fluidized biofilter and a 450 W-UV/photocatalytic reactor, only fluidized biofilter was run bypassing UV/photocatalytic reactor at stage I. Subsequently, the hybrid system was continuously run at stage II-i, ii and iii. At stage II-i, the total removal efficiency of $COD_{Cr}$ was enhanced to be 80~85%, compared to 75% at stage I, owing to 20~30% removal efficiency of the UV/photocatalytic reactor. However, at stage II-i, the total removal efficiency of color was enhanced to be 65~70%, compared to 45~65% at stage I, even though the removal efficiency of the UV/photocatalytic reactor was tantamount to merely 0~5%. As far as the removal efficiency of fluidized biofilter of the hybrid-recirculating system is concerned, its removal efficiency of color was enhanced by the synergy effect of the hybrid-recirculating system unlike $COD_{Cr}$. Besides, despite of the increase of hybrid-recirculating system-recycle ratio, the deactivation of photo-catalytic activity was scarcely observed to eliminate the color while its irreversible deactivation was observed to eliminate $COD_{Cr}$.

Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향)

  • Lee, Gun Dae;Jin, Youngeup;Park, Seong Soo;Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • 제28권6호
    • /
    • pp.655-662
    • /
    • 2017
  • Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, $K_3PO_4$, and $Na_3PO_4$, on the photocatalytic reaction were examined and the role of $K^+$, $Na^+$, $Cl^-$ and $PO_4{^{3-}}$ ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reaction rate, as compared to the cations. Under the present experimental conditions, $PO_4{^{3-}}$ revealed a significant inhibitory effect on the degradation rate whereas $Cl^-$ enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.

Effects of Anodic Voltages of Photcatalytic TiO2 and Doping in H2SO4 Solutions on the Photocatalytic Activity (광촉매 TiO2의 황산용액에서의 양극산화전압과 도핑이 광촉매 활성에 미치는 영향)

  • Lee, Seung-Hyun;Oh, Han-Jun;Chi, Choong-Soo
    • Korean Journal of Materials Research
    • /
    • 제22권8호
    • /
    • pp.439-444
    • /
    • 2012
  • To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, $TiO_2$ films were prepared in a 1.0 M $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages. Chemical bonding states of F-N-codoped $TiO_2$ were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 ${\mu}m$ for the $TiO_2$ anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the $TiO_2$ anodized in the $H_2SO_4-NH_4F$ solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure $TiO_2$ anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped $TiO_2$ anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of $TiO_2$ is improved by appropriate doping of F and N by the addition of $NH_4F$.

Characteristics of Concrete Sidewalk Block Manufactured Using Stone Powder Sludge and photocatalytic agent (석분슬러지와 광촉매제를 사용한 콘크리트 보도블록의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권6호
    • /
    • pp.4237-4244
    • /
    • 2015
  • This study examined the efflorescence characteristics of a concrete sidewalk block manufactured using recycled stone powder sludge and photocatalytic generated by surface polishing during the sidewalk block manufacturing process. The study evaluated the characteristics of the sidewalk block in terms of its quality, based on the amount of stone powder sludge used, efflorescence, and further based on the mixing ratio and number of applications of the photocatalytic. The experimental results indicated that heavy metals such as lead, hexavalent chrome, cadmium, and mercury were not present in the concrete sidewalk block, thereby confirming the effectiveness of the recycled stone powder sludge. The optimum mixing ratio of used in the concrete sidewalk block (for satisfying KS standard values such as water absorption ratio and flexural strength) was found to be 20%. The concrete sidewalk block incorporating the stone powder sludge and photocatalytic exhibited a water absorption ratio of 5.4% and flexural strength of 5.2 MPa, thereby satisfying the quality standards. Additionally, when the photocatalytic was used, efflorescence did not occur even at the low temperature of $-5^{\circ}C$, and the by the sidewalk block was found to be 70% under normal conditions and 68% when subjected to an accelerated weathering test.

Photocatalytic-Photooxidation of Halogen Derivatives of Phenols in Aqueous Solution (방향족 탄화수소 할로겐 유도체의 광촉매-광산화)

  • 김삼혁;권규혁;정오진
    • Journal of Environmental Science International
    • /
    • 제8권2호
    • /
    • pp.233-240
    • /
    • 1999
  • Industrial waste which highly loaded by halogenide phenols was photooxidized by laboratory-scale photooxidation of these organic impurities in the presence of aerotropic and titaniumdioxide as photocatalyst. The disapperance of organic compounds was determined as a function of the irradiation time. Some contaminants such as 2-chlorophenol, 2-bromphenol, 3-bromphenol, 4-bromphenol, 2,4-dibromophenol and 2,6-dibromophenol were photodegraded separately to obtain information on the reaction rates, reactivities, and reaction mechanisms of the photooxidation, and on the stoichiometric correlation between organic reactant and inorganic products concentration in the course of the photocatalytic photoreaction.

  • PDF

광촉매 반응에 의한 환경호르몬 분해특성

  • 박재홍;안상우;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.358-361
    • /
    • 2004
  • The photocatalytic degradation of Endocrine Discruptors, dibuthyl phthalate(DBP) has been investigated over TiO$_2$ photocatalysts irradiated with a ultraviolet (UV) light. The effect of operational parameters, i.e., reaction time, light intensity, pH and additive on the degradation rate of aqueous solution of Endocrine Discruptors has been examined. Results show that the employment of efficient photocatalysts and the selection of optimal operational parameters may lead to degradation of Endocrine Discruptors solutions.

  • PDF