• Title/Summary/Keyword: Photocatalytic

검색결과 1,096건 처리시간 0.032초

졸-겔법을 이용한 TiO2 박막의 광촉매 특성 (Photo-catalytic Characteristics of Sol-Gel Synthesized TiO2 Thin Film)

  • 최규만;김여환;임해진
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.846-849
    • /
    • 2013
  • $TiO_2$ 박막을 저온 열처리 졸-겔 법으로 합성하였다. 박막의 기판은 면적이 $100mm^2$인 붕규산염 유리를 사용하여 시료를 $300^{\circ}C$부터 $1100^{\circ}C$까지 열처리하였고, 이때 제조된 박막의 두께는 약 $1.5{\mu}m$정도였다. $300^{\circ}C$에서 2시간 동안 열처리한 $TiO_2$ 박막은 아나타제 상을 나타내었고 열처리 온도가 증가함에 따라 비정질 상태에서 아나타제상과 루타일 상이 공존하면서 각 상의 분율이 변화하였다. SEM 분석에 의하면 박막의 입자 크기는 $0.1{\sim}0.54{\mu}m$이었으며 Uv-visible 반사특성에 있어서 390nm부근에서 광흡수가 되는 것을 알 수 있었다. 따라서 낮은 열처리 온도에서 생성된 $TiO_2$ 박막은 주로 아나타제 상을 가지며 광촉매 특성을 2.4배 증가시키는 것으로 나타났다.

봄배추의 저장조건 및 기간을 달리하여 제조한 김치의 품질특성 (Quality Characteristics of Spring Kimchi Cabbage by Storage Conditions and Period)

  • 조순덕;방혜열;김은향;유소현;김병삼;김건희
    • 한국식생활문화학회지
    • /
    • 제32권3호
    • /
    • pp.227-234
    • /
    • 2017
  • This study attempted to establish the optimal conditions for storage of spring kimchi cabbage to stably control supply and demand. To this end, this study stored kimchi cabbages in various manners for different periods and compared the quality characteristics of kimchi using these cabbages. According to the results, pre-drying with photocatalytic and pre-cooling treatments showed average selectivity loss rates of 18.83 and 21.37%, respectively, which were lower than those of other treatments. Spring kimchi cabbages were stored for 15 weeks under various conditions, and the kimchi was stored for 4 weeks at $4^{\circ}C$. After ripening, each kimchi was analyzed for their soluble solid content, pH, acidity, and salinity. The average pH of kimchi was 4.60 and tended to rise, whereas average acidity was 0.38% and fell by 0.24 to 0.31% as the storage period was extended. Extension of the storage period caused decreases in soluble solid content and salinity, and the number of lactic acid bacteria decreased due to increased pH and reduced acidity (p<0.05). Sensory evaluation showed that all experts and non-professionals preferred kimchi treated by precooling compared to any other treatment.

유무기 하이브리드 티타늄 착화합물을 이용한 티타니아의 제조 방법 및 성장 거동에 대한 연구 (A Study on the Preparation and Growth Mechanism of Titanium Dioxide using Organic-Inorganic Hybrid Titanium Complex)

  • 강유빈;최진주;권남훈;김대근;이근재
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.487-492
    • /
    • 2019
  • Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.

$TiO_2$ 및 Ag 스퍼터링-$TiO_2$ 플라즈마 용사피막의 광전류 및 광분해 특성 (Photoelectrical Conductivity and Photodegradation Properties of $TiO_2$ and Ag Sputtered $TiO_2$ Plasma Spraying Coatings)

  • 강태구;장용호;박경채
    • Journal of Welding and Joining
    • /
    • 제27권2호
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, we investigated photocatalytic ability of plasma sprayed $TiO_2$ and Ag sputtering $TiO_2$(Ag-$TiO_2$) coatings. A sputtering processes were adopted to coat the surface of $TiO_2$ with Ag(99.99%). Ag was sputtered at 10mA, 450V for $1{\sim}11$ seconds. $TiO_2$ and Ag-$TiO_2$ coatings were heat-treated at 250, 300, 350, $400^{\circ}C$ for $0{\sim}240$seconds. Photoelectrical conductivity was measured by four-point probe, and photodegradation was calculated by UV-V is spectrometer. Microstructure observation of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by SEM. Crystal structure of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by XRD. Qualitative analyses of $TiO_2$ and Ag-$TiO_2$ coatings were conducted by EDX. When $TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 sec, photoelectrical conductivity and photodegradation were best. And in XRD analysis result, (101)/(110) relative intensity ratio of $TiO_2$(rutile) was comparably changed with photoelectrical conductivity. When Ag-$TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 [sec] after sputtering Ag for 7 sec, Photoelectrical conductivity and photodegradation are best. Surface of coatings in such condition has very small and uniform Ag particles.

Coupling of W-Doped SnO2 and TiO2 for Efficient Visible-Light Photocatalysis

  • Rawal, Sher Bahadur;Ojha, Devi Prashad;Choi, Young Sik;Lee, Wan In
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.913-918
    • /
    • 2014
  • Five mol % tungsten-doped tin oxide ($W_{0.05}Sn_{0.95}O_2$, TTO5) was prepared by co-precipitation of $SnCl_4{\cdot}5H_2O$ and $WCl_4$, followed by calcination at $1000^{\circ}C$. The as-prepared TTO5 was in the pure cassiterite phase with a particle size of ~50 nm and optical bandgap of 2.51 eV. Herein it was applied for the formation of TTO5/$TiO_2$ heterojunctions by covering the TTO5 surface with $TiO_2$ by sol-gel method. Under visible-light irradiation (${\lambda}{\geq}420$ nm), TTO5/$TiO_2$ showed a significantly high photocatalytic activity in removing gaseous 2-propanol (IP) and evolving $CO_2$. It is deduced that its high visible-light activity is caused by inter-semiconductor holetransfer between the valence band (VB) of TTO5 and $TiO_2$, since the TTO5 nanoparticle (NP) exhibits the absorption edge at ~450 nm and its VB level is located more positive side than that of $TiO_2$. The evidence for the hole-transport mechanism between TTO5 and $TiO_2$ was also investigated by monitoring the holescavenging reaction with 1,4-terephthalic acid (TA).

광반응 및 광촉매 반응을 이용한 simazine의 분해 및 독서저감에 관한 연구 (A Study on the Degradation and the Reduction of Acute Toxicity of Simazine Using Photolysis and Photocatalysis)

  • 김문경;오지윤;손현석;조경덕
    • 한국환경보건학회지
    • /
    • 제35권2호
    • /
    • pp.124-129
    • /
    • 2009
  • The photocatalysis degradation of simazine, s-triazine type herbicide was carried out using circulating photo reactor systems. In order to search for the effective method to mineralize this compound into environmentally compatible products, this study compared the removal efficiencies of simazine by changing various parameters. First, under the photocatalytic condition, simazine was more effectively degraded than by photolysis and $TiO_2$ only condition. With photocatalysis, 5 mg/l simazine was degraded to approximately 90% within 30 min, and completely degraded after 150 min. Ionic byproducts such as ${NO_2}^-$, ${NO_3}^-$, and $Cl^-$ were detected from the photocatalysis of simazine, however, the recoveries were poor, indicating the presence of organic intermediates rather than the mineralization of simazine during photocatalysis. Two bioassays using V. fischeri and D. magna were employed to measure the toxicity reduction in the reaction solutions treated by both photocatalysis and photolysis. Simazine and its photocatalysis treated water did not exert any significant toxicity to V. fischeri, marine bacterium. However, the acute toxicity test using D. magna indicates that initial acute toxicity ($EC_{50}$ = 57.30%) was completely reduced ($EC_{50}$ = 100%) after 150 min under both photocatalysis and photoysis of simazine. This results indicates that photocatalysis and photolysis of simazine reduced the acute toxicity through mineralization.

광전기촉매 공정과 전기/UV 공정을 이용한 Rhodamine B의 색 제거 (Decolorization of a Rhodamine B Using Photoelectrocatalytic and Electrolytic/UV Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1023-1032
    • /
    • 2008
  • The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with $TiO_2$ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of $TiO_2$ photoelectrode were used. Thermal oxidation electrode (Th-$TiO_2$) was made by oxidation of titanium metal sheet; sol-gel electrode (5G-$TiO_2$) and powder electrode (P-$TiO_2$) were made by coating and then heating a layer of titania sol-gel and slurry $TiO_2$ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelecoodes and DSA electrodes is: Ru/Ti > Ti > SG-$TiO_2$ > Th-$TiO_2$. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. $Na_{2}SO_{4}$ and NaCl showed different decolorization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.

염료 감응형 태양전지에서 Mesoproso $TiO_2$/FTO 사이에 완충층으로써의 PLD로 증착한 $TiO_2$ 박막에 관한 연구 (A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Mesoproso $TiO_2$ and FTO of Dye-sensitized Solar Cell)

  • 송상우;김성수;노지형;이경주;문병무;김현주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.424-424
    • /
    • 2008
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. Models based on a built-in electric field which sets the upper limit for the open circuit voltage(Voc) and/or the possibility of a Schottky barrier at the interface between the mesoporous wide band gap semiconductor and the transparent conducting substrate have been presented. $TiO_2$ thin films were deposited on the FTO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1 hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD) and atomic force microscope(AFM). Thickness of $TiO_2$ thin films were controlled deference deposition time and measurement by scanning electron microscope(SEM). Then we manufactured a DSC unit cells and I-V and efficiency were tested using solar simulator.

  • PDF

$TiO_2$ 광촉매를 처리한 Diazinon의 광분해에 관한 연구 (The study for photodegradation of diazinon using $TiO_2$ photocatalyst)

  • 류성필;오윤근
    • 한국환경과학회지
    • /
    • 제9권2호
    • /
    • pp.151-158
    • /
    • 2000
  • Considerable interest has been shown in recent years towards utilizing $TiO_2$ particles as a photocatalyst in the degradation of harmful organic contaminants. In this study, photocatalytic degradation of diazinon which is extensively used as a pesticide in the agriculture field, has been investigated with UV-illuminated $TiO_2$ weight, UV wavelength, pH of the solution. Photodegradation rate increased with decreasing initial concentration of diazinon and with increasing pH of the solution. Photodegradation rate increased with increasing $TiO_2$ weight, but was nearly the same at $TiO_2$ weight of 1g/$\ell$, 2 g/$\ell$, i.e., for initial diazinon concentratin of 5 mg/$\ell$. UV wavelength affecting on the degradation rate of diazinon decreased in the order of 254 nm>312 nm> 365 nm. For $TiO_2$ weight of 1 g/$\ell$and initial diazinon concentration of 5 mg/$\ell$, the photodegradation removal of diazinon was 100% after 130 min in the case of 254 nm, but 95% in the case of 312 nm, and 84% in the case of 365nm, after 180 min. The photodegradation of diazinon followed a first order or a pseudo - first order reaction rate. For initial diazinon concentration of 5 mg/$\ell$, the rate constants(k) in UV and $TiO_2$(1 g/$\ell$)/UV system were $0.006 min^{-1} and 0.0252 min^{-1} at 254 nm, 0.0055 min^{-1} and 0.0104 min^{-1} at 312 nm, and 0.004 min^{-1}$ at 365 nm respectively.

  • PDF

Synthesis of Magnetic Sonophotocatalyst and its Enhanced Biodegradability of Organophosphate Pesticide

  • Lirong, Meng;Jianjun, Shi;Ming, Zhao;Jie, He
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3521-3526
    • /
    • 2014
  • A magnetic sonophotocatalyst $Fe_3O_4@SiO_2@TiO_2$ is synthesized for the enhanced biodegradability of organophosphate pesticide. The as-prepared catalysts were characterized using different techniques, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). The radial sonophotocatalytic activity of $Fe_3O_4@SiO_2@TiO_2$ nanocomposite was investigated, in which commercial dichlorvos (DDVP) was chosen as an object. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and enhancement of biodegradability. The effect of different factors, such as reaction time, pH, the added amount of catalyst on $COD_{Cr}$ removal efficiency were investigated. The average $COD_{Cr}$ removal efficiency reached 63.13% after 240 min in 12 L sonophotocatalytic reactor (catalyst $0.2gL^{-1}$, pH 7.3). The synergistic effect occurs in the combined sonolysis and photocatalysis which is proved by the significant improvement in $COD_{Cr}$ removal efficiency compared with that of solo photocatalysis. Under this experimental condition, the $BOD_5/COD_{Cr}$ ratio rose from 0.131 to 0.411, showing a remarkable improvement in biodegradability. These results showed that sonophotocatalysis may be applied as pre-treatment of pesticide wastewater, and then for biological treatment. The synthesized magnetic nanocomposite had good photocatalytic performance and stability, as when it was used for the fifth time, the $COD_{Cr}$ removal efficiency was still about 62.38%.