• Title/Summary/Keyword: Photoacoustic tomography

Search Result 12, Processing Time 0.015 seconds

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

Critical Enhancement of Photothermal Effect by Integrated Nanocomposites of Gold Nanorods and Iron Oxide on Graphene Oxide

  • Yun, Kum-Hee;Seo, Sun-Hwa;Kim, Bo-Mi;Joe, Ara;Han, Hyo-Won;Kim, Jong-Young;Jang, Eue-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2795-2799
    • /
    • 2013
  • Irradiation of gold nanorods (GNRs) with laser light corresponding to the longitudinal surface plasmon oscillation results in rapid conversion of electromagnetic energy into heat, a phenomenon commonly known as the photothermal effect of GNRs. Herein, we propose a facile strategy for increasing the photothermal conversion efficiency of GNRs by integration to form graphene oxide (GO) nanocomposites. Moreover, conjugation of iron oxide (IO) with the GO-GNR nanohybrid allowed magnetic enrichment at a specific target site and the separated GO-IO-GNR assembly was rapidly heated by laser irradiation. The present GO-IO-GNR nanocomposites hold great promise for application in various biomedical fields, including surface enhanced Raman spectroscopy imaging, photoacoustic tomography imaging, magnetic resonance imaging, and photothermal cancer therapy.