• Title/Summary/Keyword: Photoacoustic signal

Search Result 31, Processing Time 0.022 seconds

Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging

  • Nam, Seung Yun;Emelianov, Stanislav Y.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-155
    • /
    • 2014
  • Although various ophthalmic imaging methods, including fundus photography and optical coherence tomography, have been applied for effective diagnosis of ocular diseases with high spatial resolution, most of them are limited by shallow imaging penetration depth and a narrow field of view. Also, many of those imaging modalities are optimized to provide microscopic anatomical information, while functional or cellular information is lacking. Compared to other ocular imaging modalities, photoacoustic imaging can achieve relatively deep penetration depth and provide more detailed functional and cellular data based on photoacoustic signal generation from endogenous contrast agents such as hemoglobin and melanin. In this paper, array-based ultrasound and photoacoustic imaging was demonstrated to visualize pigmentation in the eye as well as overall ocular structure. Fresh porcine eyes were visualized using a real-time ultrasound micro-imaging system and an imaging probe supporting laser pulse delivery. In addition, limited photoacoustic imaging field of view was improved by an imaging probe tilting method, enabling visualization of most regions of the retina covered in the ultrasound imaging.

Photoacoustic Investigation of Carrier Transport and Thermal Diffusivity in GaAs and Si (광음향분광법을 이용한 GaAs와 Si 반도체의 열확산도 측정과 운반자특성 연구)

  • Lim, Jong Tae;Han, Ho Youn;Park, Seung Han;Kim, Ung;Choi, Joong Gill
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.7
    • /
    • pp.329-336
    • /
    • 1997
  • Photoacoustic spectroscopy was utilized to investigate the carrier transport and the thermal diffusivity in GaAs and Si. From the frequency dependence of the photoacoustic signal, it is found that heat source was originated from the instantaneous thermalization process in low frequency region. In high frequency region, however, the heat was generated by the nonradiative bulk recombination and the nonradiative surface recombination processes. It was also shown that the photoacoustic effects in GaAs of a direct band gap were governed by all three processes and those in Si of an indirect band gap were produced by the instantaneous thermalization and the nonradiative bulk recombination only. The phase of the photoacoustic signal showed a minimum value in GaAs. In Si, the phase of the photoacoustic signal was monotonically decreased as the modulation frequency was increased, demonstrating the above-mentioned mechanisms of the generation of heat. By measuring the photoacoustic signal, thermal diffusivities of semiconductors were determined to be ∼0.35 ㎠/s for GaAs and ∼1.24 ㎠/s for Si. In addition, the similar values of thermal diffusivities were obtained from the curve fitting of photoacoustic phase spectra.

  • PDF

Photoacoustic Effect of Ethene: Sound Generation due to Plant Hormone Gases

  • Ide, David W.;Park, Han Jung
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.139-142
    • /
    • 2017
  • Ethene ($C_2H_4$), which is produced in plants as they mature, was used to study its photoacoustic properties using photoacoustic spectroscopy. Detection of trace amounts, with $N_2$ gas, of $C_2H_4$ gas was also applied. The gas was tested in various conditions-temperature, concentration of the gas, gas cell length, and power of the laser- to determine their effect on the photoacoustic signal, the ideal conditions to detect trace gas amounts, and concentration of $C_2H_4$ produced by an avocado and a banana. A detection limit of 10 ppm was determined for pure $C_2H_4$. A detection of 5% and 13% (by volume) concentration of $C_2H_4$ was produced for a ripening avocado and banana, respectively, in closed space.

Frequency and power stabilization of radio frequency excited CO2 laser using photoacoustic effect (광음향 효과에 의한 고주파 여기식 CO2 레이저의 주파수 및 출력 안정화)

  • Choi, Jong-Woon;Yu, Moon-Jong;Woo, Sam-Yong;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.569-574
    • /
    • 2004
  • We stabilized the frequency and power of a CW radio-frequency-excited $CO_2$ laser on the peak of the Doppler broadened gain curve using the photoacoustic effect generated from the laser itself. The condenser microphone is installed in the radio frequency discharge chamber to detect a photoacoustic signal. The photoacoustic signal is fed to a lock-in stabilizer as a reference signal for stabilization. The frequency stability is estimated to be better then 5.4${\times}$10$^{-8}$ at the P(20) line. The stabilized output variation was reduced 9.3%, compared to 100% for a free running laser.

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Enhancing the Reproducibility of a Photoacoustic Signal Using a Minimum-volume Cell (최소 부피 광음향 셀의 광음향 신호 재현성 향상에 관한 연구)

  • Kim, Kyong-Seok;Lee, Kew-Seung;Ahn, Hong-Gyu;Lee, Eung-Jang;Kim, Dae-Kyu;Park, Seung-Han
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • Reproducibility obtained by a minimum-volume cell for photoacoustic (PA) signals is strongly dependent upon the sealing materials and sealing efficiency. Therefore, we have proposed, designed, and constructed an apparatus to enhance the sealing efficiency, and we have examined the reproducibility of amplitude and phase of PA signals with a minimum-volume cell. In particular, we have measured the PA signal as a function of modulation frequency for various rubber O-rings by using our apparatus. The results show that a silicon rubber O-ring can improve the reproducibility of the PA signal and phase by up to 53.4% and 80.4%, respectively, compared to that obtained by using the conventional sealing material, vacuum grease.

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs

  • Tabaru, Timucin Emre;Hayber, Sekip Esat;Saracoglu, Omer Galip
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.250-260
    • /
    • 2018
  • A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.

Frequency and Power Stabilization of $CO_2$ Laser Using a Photoacoustic Effect (광음향효과에 의한 $CO_2$ 레이저 주파수 및 출력 안정화 방법)

  • Choi Jong-Woon;Yu Moon-Jong;Choi Sung-Woong;Seo Ho-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.583-588
    • /
    • 2004
  • We stabilized the frequency and power of a high voltage excited CW CO2 laser on the peak of the Doppler broadened gain curve using the photoacoustic effect generated from the laser itself. The photoacoustic signal is directly coupled from an radio frequency discharge chamber via a capacitor microphone into a detector and a lock-in stabilizer. The frequency stability is estimated to be better then 1.2×10/sup -7/ at the transition P(20) line. The stabilized output power variation was reduced to from 77 % to 3.3 %.

Signal-Characteristic Analysis with Respect to Backing Material of PVDF-Based High-Frequency Ultrasound for Photoacoustic Microscopy (광음향 현미경을 위한 PVDF 기반 고주파수 초음파 변환기의 흡음층 소재에 따른 신호 특성 분석)

  • Lee, Junsu;Chang, Jin Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.112-119
    • /
    • 2015
  • Photoacoustic microscopy is capable of providing high-resolution molecular images, and its spatial resolution is typically determined by ultrasonic transducers used to receive the photoacoustic signals. Therefore, ultrasonic transducers for photoacoustic microscopy (PAM) should have a high operating frequency, broad bandwidth, and high signal-reception efficiency. Polyvinylidene fluoride (PVDF) is a suitable material. To take full advantage of this material, the selection of the backing material is crucial, as it influences the center frequency and bandwidth of the transducer. Therefore, we experimentally determined the most suitable backing material among EPO-TEK 301, E-Solder 3022, and RTV. For this, three PVDF high-frequency single-element transducers were fabricated with each backing material. The center frequency and -6 dB bandwidth of each transducer were ascertained by a pulse-echo test. The spatial resolution of each transducer was examined using wire-target images. The experimental results indicated that EPO-TEK 301 is the most suitable backing material for a PAM transducer. This material provides the highest signal magnitude and a reasonable bandwidth because a large portion of the energy propagates toward the front medium, and the PVDF resonates in the half-wave mode.

$CO_2$ Laser Absorption Measurement of $CH_3CH_2Br$ using Photoacoustic Method

  • Jang Soo Shin;Kyung Hoon Jung;Cheol Jung Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.553-556
    • /
    • 1992
  • The ${CO}_2$ laser absorption measurement of ${CH}_3{CH}_2Br$ utilizing photoacoustic (PA) technique was performed using a cw and a pulsed ${CO}_2$ lasers. The absorption profile in the ${CO}_2$ laser wavelength region (9-10 ${\mu}$m) and the macroscopic small signal absorption cross section at 10P(20) (10.59 ${\mu}$m, 944 $cm^{-1}$) laser line were measured using a cw ${CO}_2$ laser. The laser fluence dependence on infrared multiphoton absorption (IRMPA) was also studied with a pulsed TEA ${CO}_2$ laser at 10P(20) laser line. In view of monotonic increase of PA signal with the rise of laser fluence, it was suggested that the anharmonicity in pumped vibration mode did not restrict ir multiphoton absorption in ${CH}_3{CH}_2Br$ system as found in large molecular system.