• Title/Summary/Keyword: PhotoVoltaic (PV) energy

Search Result 35, Processing Time 0.027 seconds

Analysis of Connected Operations of PV Source and Li Energy Storage Equipment to Power System (태양광 전원과 리튬 에너지 저장장치의 연계운전시 특성 해석)

  • Kim, Deok Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.106-112
    • /
    • 2014
  • This paper presents the analysis of connected operation of photo voltaic source and Li energy storage system. The micro-grid has been installed and operated for several years at the campus of USF and has been a role of test bed. Photo voltaic source has been strongly influenced by the location, weather and climate of a installed area and Li battery is connected directly to the photo voltaic source to compensate for the limitations. The Li battery is operated to supply power output to the grid by the charging or discharging mode based on the average power output of the PV source which is calculated from monitored data for several years. The load of the PV and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery are analyzed in detail. In connected operations of PV and Li battery to power system, the PV and Li battery is operated to supply constant power during only day time or peak time to increase load shedding ratio and efficient usage of generation sources in power system.

Performance Analysis of the BIPV/T system by the performance Test- Part1. PV efficiency (실험을 통한 BIPV/T 시스템 성능분석-1. PV 발전효율)

  • Lee, Hyeon-Ju;Jo, Hye-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.445-450
    • /
    • 2012
  • BIPV/T (Building Intergrated PhotoVoltaic/Thermal) is combined system produces electricity and thermal energy. The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. The efficiency of the PV system's performance will raise by the system removes heat from the PV. The test system is installed to top floor of the experimental house in the KEPCO Research Institute. The planned experiment is following. (1) Supplying heat energy to top floor. (2) Supplying heat and cool energy to thermal storage in the bottom of the top floor. (3) Supplying heat energy to EHP for improved performance. The experimental performance is executed from 13th February to 13th March, 2012. The solar generation of electricity is 4.04kWh under the horizontal solar radiation is $1000W/m^2$ and the air temperature is $25^{\circ}C$.

  • PDF

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Performance Evaluation of a Solar Tracking PV System with Photo Sensors (포토센서를 이용한 태양위치 추적기의 성능분석에 관한 연구)

  • Jeong, Byeong-Ho;Cho, Geum-Bae;Lee, Kang-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.67-73
    • /
    • 2013
  • The conversion of solar radiation into electrical energy by Photo-Voltaic (PV) effect is a very promising technology, being clean, silent and reliable, with very small maintenance costs and small ecological impact. The output power produced by the PV panels depends strongly on the incident light radiation. The continuous modification of the sun-earth relative position determines a continuously changing of incident radiation on a fixed PV panel. The point of maximum received energy is reached when the direction of solar radiation is perpendicular on the panel surface. Thus an increase of the output energy of a given PV panel can be obtained by mounting the panel on a solar tracking device that follows the sun trajectory. Tracking systems that have two axes and follow the sun closely at all times during the day are currently the most popular. This paper presents research conducted into the performance of Solar tracking system with photosensors. The results show that an optimized dual-axis tracking system with photosensor performance and analysis. From the obtained results, it is seen that the sun tracking system improves the energy and energy efficiency of the PV panel.ti-junction CPV module promises to accelerate growth in photovoltaic power generation.

Study on the PV Driven Dehumidifying System with Oyster Shell and Thermoelectric Device (굴패각과 열전소자를 이용한 태양광 구동형 제습시스템에 관한 연구)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • This paper has dealt with the probability of oyster shell desiccant cooling system driven by renewable energy of photo-voltaic effect. For this, fundamental experiments have been carried out focusing on the observation of dehumidifying effect of oyster shell and peltier elements used for air conditioning system. From this study, it is found that oyster shell has sufficient probability for using as a desiccant in air-conditioning system. Moreover, the heat releasing device(peltier element) can be used with direct current from PV cells so the system can be operated with high efficiency. As a result, the absolute humidity in a test chamber was reasonably controlled by oyster shell and peltier elements. Also the photo-voltaic energy from sun was enough for running power of this system.

Performance Analysis of the BIPV/T system by the performance Test- Part2. Thermal Performance (실험을 통한 BIPV/T 시스템 성능분석-2.시스템 열성능)

  • Jo, Hye-Jin;Lee, Hyeon-Ju
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.255-259
    • /
    • 2012
  • BIPV/T (Building Intergrated PhotoVoltaic/Thermal) is combined system produces electricity and thermal energy. The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. The test system is installed to top floor of the experimental house in the KEPCO Research Institute. The experimental performance is executed from 13th February to 13th March, 2012. The expected system's thermal performance is 1.9kWh under the horizontal solar radiation is $600W/m^2$ and the air flow in the system is $20CMH/m^2$.

  • PDF

Relationships between Electric Power Generation of PV System and Heat Transfer which has Free Air Ventilation Duct (배면 통기유로를 가지는 태양광 발전시스템의 발전효율과 열전달의 관계)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.625-631
    • /
    • 2010
  • Recently, the fossil energy and its related environmental problems (increase in PPM of $CO_2$) have been increased. Therefore, the interests on new and renewable energy have been increased as the one of the future industrial leading items. Among the renewable energy, the PV (Photo-Volatic) systems has particular merit at the electricity can be directly acquired from the sun. Usually in PV systems, the ambient temperature and air velocity have strongly related on the effect of power generation of PV panel. So the purpose of this study is to clarify relationships between power generation of PV panel and outer environmental factors like temperature and air velocity. And these types of applications using natural energy are strongly affected by the climate conditions. Therefore the data of this study were re-arranged in terms of non-dimensional correlations.

DWT-Based Parameter and Iteration Algorithm for Preventing Arc False Detection in PV DC Arc Fault Detector (태양광 직렬 아크 검출기의 오검출 방지를 위한 DWT 기반 파라미터 및 반복 알고리즘)

  • Ahn, Jae-Beom;Lee, Jin-Han;Lee, Jin;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.100-105
    • /
    • 2022
  • This paper applies the arc detection algorithm to prevent the false detection in photo voltaic series arc detection circuit, which is required not only to detect the series arc quickly, but also not falsely detect the arc for the non-arc noise. For this purpose, this study proposes a rapid and preventive false detection method of single peak noise and short noise signals. First, to prevent false detection by single peak noise, Discrete wavelet transform (DWT)-based characteristic parameters are applied to determine the shape and the amplitude of the noise. In addition, arc fault detection within a few milliseconds is performed with the DWT iterative algorithm to quickly prevent false detection for short noise signals, considering the continuity of serial arc noise. Thus, the method operates not only to detect series arc, but also to avoid false arc detection for peak and short noises. The proposed algorithm is applied to real-time serial arc detection circuit based on the TMS320F28335 DSP. The serial arc detection and peak noise filtering performances are verified in the built simulated arc test facility. Furthermore, the filtering performance of short noise generated through DC switch operation is confirmed.

NeW Output Voltage Control Scheme Based on SoC Variation of BESS Applicable for Stand-alone DC Microgrid (독립형 DC 마이크로그리드에 적용 가능한 BESS의 SoC를 기반으로 한 새로운 출력전압 제어기법)

  • Yu, Seung-Yeong;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1176-1185
    • /
    • 2016
  • This paper proposes a new output voltage control scheme based on the SoC variation of the battery energy storage system (BESS) applicable for the stand-alone DC microgrid. The proposed control scheme provides relatively lower variation of the DC grid voltage than the conventional droop method. The performance of proposed control scheme was verified through computer simulations for a typical stand-alone DC microgrid which consists of BESS, photo-voltaic (PV) panel, engine generator (EG), and DC load. A scaled hardware prototype for the stand-alone DC microgrid with DSP controller was set up in the lab, and the proposed control algorithm was installed in the DSP controller. The test results were compared with the simulation results for performance verification and actual system implementation.

PV Power Prediction Models for City Energy Management System based on Weather Forecast Information (기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델)

  • Eum, Ji-Young;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.