• Title/Summary/Keyword: Photo-physical

Search Result 141, Processing Time 0.027 seconds

Effect of Electrode Formation Process using E-beam Evaporation on Crystalline Silicon Solar Cell (E-Beam evaporation을 이용한 전극 형성 공정이 결정질 실리콘 태양전지에 미치는 영향 분석)

  • Choi, Dongjin;Park, Se Jin;Shin, Seung Hyun;Lee, Changhyun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Most high-efficiency n-type silicon solar cells are based on the high quality surface passivation and ohmic contact between the emitter and the metal. Currently, various metalization methods such as screen printing using metal paste and physical vapor deposition are being used in forming electrodes of n-type silicon solar cell. In this paper, we analyzed the degradation factors induced by the front electrode formation process using e-beam evaporation of double passivation structure of p-type emitter and $Al_2O_3/SiN_x$ for high efficiency solar cell using n-type bulk silicon. In order to confirm the cause of the degradation, the passivation characteristics of each electrode region were determined through a quasi-steady-state photo-conductance (QSSPC).

Physical Properties of Molecular Clouds in NGC 6822 Hubble V

  • Lee, Hye-In;Pak, Soojong;Oh, Heeyoung;Le, Huynh Anh N.;Lee, Sungho;Lim, Beomdu;Tatematsu, Ken'ichi;Park, Sangwook;Mace, Gregory;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.66.4-66.4
    • /
    • 2019
  • NGC 6822 is a dwarf irregular galaxy whose metal abundance is lower than of the Large Magellanic Cloud. Hubble V is the brightest HII complex where molecular clouds surround the core cluster of OB stars. Because of its proximity (d = 500 kpc), we can resolve the star-forming regions on parsec scales (1 arcsec = 2.4 pc). Using the high-resolution (R = 45,000) near-infrared spectrograph, IGRINS, we observed molecular hydrogen emission lines from photo-dissociation regions (PDRs) and $Br{\gamma}$ emission line from ionized regions. In this presentation, we compare our data PDR models in order to derive the density distribution of the molecular clouds on parsec scales and to estimate the total mass of the clouds.

  • PDF

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

Synthesis of TiO2 nanoparticles using Water-in-oil microemulsion method (유중수형(油中水型) 마이크로에멀젼법을 이용한 타이타니아 나노입자의 제조)

  • So Min Jin;Hyeon Jin;Seong Ju Kim;Yu Na Kim;Dae-Won Lee
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • TiO2 is a versatile metal oxide material that is frequently used as a photo-catalyst for organic pollutant oxidation and a functional material for ultraviolet-ray protection. To improve its chemical/physical properties and widen the range of industrial application, it is demanded to control the crystalline feature and morphology precisely by applying advanced nano-synthesis methods. In this study, we prepared TiO2 nanoparticles using the water-in-oil (W/O) microemulsion method and compared them with the particles synthesized by the conventional precipitation method. Also, we tried to find the optimum conditions for obtaining nano-sized, anatase-rich TiO2 particles by the W/O microemulsion method. We analyzed the crystalline feature and particle size of the prepared samples using X-ray diffraction (XRD) and Transmission electron microscopy (TEM). In summary, we found the W/O microemulsion is more effective than precipitation in obtaining nano-sized TiO2. The best result was derived when the microemulsion was formed using AOT surfactant, hydrolysis was performed under basic condition and the sample was calcined at 200℃.

A STUDY ON THE PHYSICAL PROPERTIES OF RESTORATIVE MATERIALS FOR PHOTO-POLYMERIZATION OF ARGON LASER (아르곤 레이저를 이용한 광중합 수복재의 물리적 성질에 관한 연구)

  • Ju, Sang-Ho;Choi, Hyung-Jun;Kim, Seong-Oh;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.368-382
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the results of argon laser for 5 seconds, argon laser for 10 seconds, and visible light for 40 seconds photo-polymerization in compressive strength, microhardness, curing depth, temperature rising during polymerization, and polymerization shrinkage. Hybrid type composite resin(Z-100) and compomer(Dyract) were used to be compared. The compressive strength was measured by an Instron(1mm/min cross head speed) in 60 specimens and the microhardness of the surface was expressed by Vickers Hardness Number(VHN) in 30 specimens. The curing depth was evaluated comparing the different values of upper and lower VHN according to irradiation time and thickness for the light source polymerization in 60 specimens. The temperature rising during photopolymerization was observed by the temperature change with thermocouple sensitizer beneath 40 specimens at the argon laser for 10 seconds and visible light 40 seconds irradiation. The polymerization shinkage was evaluated by calculating the decrease of % volume by using a dilatometer in 30 specimens. The results were as follows ; 1. In the case of compressive strength, the argon laser polymerization groups were higher than visible light group in Z-100 (p<0.05). In Dyract, the argon laser 5 seconds group did not show a significant difference with the visible light 40 seconds group. The argon laser 10 seconds group showed the markedly low value when compared with other groups (p<0.05) 2. In microhardness, Z-100 was better than Dyract when comparing by VHNs (p<0.05); however, there was not a significant difference between two materials in the visible light 40 seconds group and the argon laser 10 seconds group. 3. In the study of curing depth, Z-100 showed the consistent polymerization in argon laser irradiation because there was no difference in the VHN decrease according to the thickness change. Over the thickness control, the results did not show a significant difference between visible light and argon laser group in Z-100; however, in the case of Dyract, the visible light 40 seconds group was better than the argon laser groups(p<0.05). 4. There was a significant difference between the two materials in temperature rising during polymerization (p<0.05), but not a significant difference between irradiation times, 5. There was not a significant difference between the two materials in polymerization shrink age. The argon laser 5 seconds group was smaller than the other groups (p<0.05). It could be concluded that Z-100 polymerization was recommended to use the argon laser for reduction of the irradiation time while Dyract was recommended to use the visible light polymerization.

  • PDF

Synthesis and Properties of Photo-curable Biomass-based Urethane Acrylate Oligomers (광경화형 바이오매스계 우레탄 아크릴레이트 올리고머의 합성 및 물성 연구)

  • Se-Jin Kim;Lan-Ji Baek;Byungjin Koo;Jungin Choi;JungMi Cheon;Jae-Hwan Chun
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2023
  • Generally, solvent-type coatings generate a large amount of volatile organic chemicals(VOC), which are carcinogenic substances, in the manufacturing process, and their use is regulated due to environmental problems. There is also the problem of resource depletion due to limited fossil fuels. Therefore, in this study, UV-curable urethane acrylate oligomers were synthesized with different contents of isosorbide, which is a biomass material, and proceeded to evaluate the physical properties of coatings. As the isosorbide contents increased, the viscosity, glass transition temperature, tensile strength, stain resistance, and pencil hardness increased, but elongation and flexibility decreased, and BOI-3 showed the best adhesion. The isosorbide content of the oligomer fixed at 20%, UV-curable urethane acrylate oligomer was synthesized according to the content ratio of polycaprolactone diol(PCL) and Ecoprol H1000(Ecoprol). As the PCL/Ecoprol content ratio increased, the glass transition temperature, elongation, and flexibility increased, but the tensile strength and pencil hardness decreased. It was confirmed that the adhesion and stain resistance increased by improving the surface bonding strength of PCL. All films of oligomers synthesized were transparent without discoloration.

Fabrication from the Hybrid Quantum Dots of CdTe/ZnO/G.O Quasi-core-shell-shell for the White LIght Emitting DIodes

  • Kim, Hong Hee;Lee, YeonJu;Lim, Keun yong;Park, CheolMin;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.189-189
    • /
    • 2016
  • Recently, many researchers have shown an increased interest in colloidal quantum dots (QDs) due to their unique physical and optical properties of size control for energy band gap, narrow emission with small full width at half maxima (FWHM), broad spectral photo response from ultraviolet to infrared, and flexible solution processing. QDs can be widely used in the field of optoelectronic and biological applications and, in particular, colloidal QDs based light emitting diodes (QDLEDs) have attracted considerable attention as an emerging technology for next generation displays and solid state lighting. A few methods have been proposed to fabricate white color QDLEDs. However, the fabrication of white color QDLEDs using single QD is very challenging. Recently, hybrid nanocomposites consisting of CdTe/ZnO heterostructures were reported by Zhimin Yuan et al.[1] Here, we demonstrate a novel but facile technique for the synthesis of CdTe/ZnO/G.O(graphene oxide) quasi-core-shell-shell quantum dots that are applied in the white color LED devices. Our best device achieves a maximum luminance of 484.2 cd/m2 and CIE coordinates (0.35, 0.28).

  • PDF

다양한 온도에서 열처리한 씨앗 층 위에 열수화법을 이용한 ZnO 나노 막대의 성장

  • Bae, Yeong-Suk;Kim, Yeong-Lee;Kim, Dong-Chan;Gong, Bo-Hyeon;An, Cheol-Hyeon;Choe, Mi-Gyeong;U, Chang-Ho;Han, Won-Seok;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.433-433
    • /
    • 2009
  • ZnO-based materials have been extensively studied for optoelectronic applications due to their superiors physical properties such as wide direct bandgap (~3.37 eV), large exciton binding energy (~60 meV), high transparency in the visible region, and low cost. Especially, one-dimensional (1D) ZnO nanostructures have attracted considerable attention owing to quantum confinement effect and high crystalline quality. Additionally, various nanostructures of ZnO such as nanorods, nanowires, nanoflower, and nanotubes have stimulated the interests because of their semiconducting. and piezoelectric properties. Among them, vertically aligned ZnO nanorods can bring the improved performance in various promising photoelectric fields including piezo-nanogenerators, UV lasers, dye sensitized solar cells, and photo-catalysis. In this work, we studied the effect of the annealing temperature of homo seed layers on the formation of ZnO nanorods grown by hydrothermal method. The effect of annealing temperature of seed layer on the length and orientation of the nanorods was investigated scanning electron microscopy investigation. Transmission electron microscopy and X-ray diffraction measurement were performed to understand the effect of annealing temperatures of seed layers on the formation of nanorods. Moreover, the optical properties of the seed layers and the nanorods were studied by room temperature photoluminescence.

  • PDF

Identification of Irradiated Seafood Cooking Drips Using Various Detection Methods (수산 자숙액의 방사선 조사 여부 판별 특성 연구)

  • Choi, Jong-Il;Kim, Yeon-Joo;Kim, Jae-Hun;Lee, Ju-Woon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1569-1574
    • /
    • 2011
  • In this study, the identification of the irradiated seafood cooking drips from Hizikia fusiformis, Enteroctopus dofleini and Thunnus thynnus was conducted. The physical detection methods used included photo-stimulated luminescence (PSL) and thermoluminescence (TL), and the chemical detection methods were hydrocarbons analysis. In the PSL study, all seafood cooking drip samples showed 260~510 photon counts; thus, the PSL method could not be used for the detection of irradiated seafood cooking drips. The TL method could be used for the detection of irradiated H. fusiformis and E. dofleini cooking drips. In both cooking drips, the shapes of the glow curves indicated a specific peak at 150$^{\circ}C$~250$^{\circ}C$, which made it possible to identify the irradiated samples. The hydrocarbons derived by gamma irradiation of T. thynnus cooking drip were not detected due to low concentration and inconsistent content of fatty acids in the untreated T. thynnus cooking drip.

Ammonium Adsorption Property of Acrylic Acid and Styren Grafting Polypropylene Non-Woven Fabric Synthesized by Photo-induced Polymerization (광조사 중합법에 의해 합성된 PP-g-AA와 PP-g-St 부직포의 암모니아성 질소 흡착특성 비교)

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1255-1263
    • /
    • 2008
  • The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal $NH_3-N$ from waste water was evaluated. The results evidently indicate that the adsorption capacities of $NH_3-N$ onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of $NH_3-N$ at the degree of grafting of 80 wt.%. The adsorption behaviour of $NH_3-N$ onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N ${H_2}{O_4}$. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the $NH_3-N$ removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.