• Title/Summary/Keyword: Photo-Catalyst

검색결과 86건 처리시간 1.852초

The Si Microwire Solar Cell Fabricated by Noble Metal Catalytic Etching (Noble metal catalytic etching법으로 제조한 실리콘 마이크로와이어 태양전지)

  • Kim, Jae-Hyun;Baek, Sung-Ho;Choi, Ho-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.278-278
    • /
    • 2009
  • A photovoltaic device consisting of arrays of radial p-n junction wires enables a decoupling of the requirements for light absorption and carrier extraction into orthogonal spatial directions. Each individual p-n junction wire in the cell is long in the direction of incident light, allowing for effective light absorption, but thin in orthogonal direction, allowing for effective carrier collection. To fabricate radial p-n junction solar cells, p or n-type vertical Si wire cores need to be produced. The majority of Si wires are produced by the vapor-liquid-solid (VLS) method. But contamination of the Si wires by metallic impurities such as Au, which is used for metal catalyst in the VLS technique, results in reduction of conversion efficiency of solar cells. To overcome impurity issue, top-down methods like noble metal catalytic etching is an excellent candidate. We used noble metal catalytic etching methods to make Si wire arrays. The used noble metal is two; Au and Pt. The method is noble metal deposition on photolithographycally defined Si surface by sputtering and then etching in various BOE and $H_2O_2$ solutions. The Si substrates were p-type ($10{\sim}20ohm{\cdot}cm$). The areas that noble metal was not deposited due to photo resist covering were not etched in noble metal catalytic etching. The Si wires of several tens of ${\mu}m$ in height were formed in uncovered areas by photo resist. The side surface of Si wires was very rough. When the distance of Si wires is longer than diameter of that Si nanowires are formed between Si wires. Theses Si nanowires can be removed by immersing the specimen in KOH solution. The optimum noble metal thickness exists for Si wires fabrication. The thicker or the thinner noble metal than the optimum thickness could not show well defined Si wire arrays. The solution composition observed in the highest etching rate was BOE(16.3ml)/$H_2O_2$(0.44M) in Au assisted chemical etching method. The morphology difference was compared between Au and Pt metal assisted chemical etching. The efficiencies of radial p-n junction solar Cells made of the Si wire arrays were also measured.

  • PDF

Thermal stabilizing effect of Yb3+ Er3+ codoping into TiO2 powder prepared by sol-gel method and its upconversion characteristic (Yb3+ Er3+ ions 동시도핑에 의한 TiO2 분말의 열적 안정성 증가효과와 upconversion 특성 연구)

  • Eun, Jong-Won;Oh, Dong-Keun;Kim, Kwang-Jin;Hong, Tae-Ui;Jeong, Seong-Min;Choi, Bong-Geun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제20권4호
    • /
    • pp.173-177
    • /
    • 2010
  • Thermal stabilizing effect of $Yb^{3+},\;Er^{3+}$ codoping into $TiO_2$ powder prepared by sol-gel method and its upconversion characteristics were analyzed. The effect of $TiO_2:Yb^{3+},\;Er^{3+}$ ions on crystallinity and phase transition was studied by X-ray diffraction (XRD). The change of band-gap energy induced from Yb and Er codoping was analyzed by UV-Vis. The band-gap energy of $TiO_2$ have been slightly narrowed by $Yb^{3+},\;Er^{3+}$ codoping, which indicated that the $Yb^{3+},\;Er^{3+}$ ions can enhance the photo-catalytic property of $TiO_2$. green and red up-conversions of $Yb^{3+}$ and $Er^{3+}$ co-doped $Y_2O_3:Yb^{3+},\;Er^{3+}$ phosphor were analyzed by PL equipped with 980 nm laser.

Air Purification of Smoking Booth Using Photocatalytic Process and Air Filter (광촉매공정과 필터를 이용한 흡연부스 공기정화연구)

  • Kim, Tae-Young;Cho, Yeong-Tae;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • 제27권4호
    • /
    • pp.433-438
    • /
    • 2016
  • The current study evaluated the air quality of the smoking booth equipped with the air purification system consisting of photocatalysts and air filters by measuring the concentrations of hazardous substances of tobacco smoke such as CO, HCHO, $CH_3CHO$, PM10 and PM2.5. To enhance the removal efficiency of hazardous substances, an infrared ray was exposed to improve the reactivity of OH radical generated from the photocatalyst toward environmental tobacco smoke (ETS) gas phase hazardous materials. It was found that the smoking booth with the air purification system improved the removal efficiency of hazardous substances containing formaldehyde by 85.2% compared to that of the smoking booth without any purification systems. In addition, the removal efficiency of the fine dust after treatment was enhanced up to 89.4%.

Preparation of TiO2-SiO2 Sol and Its Photo-Catalyst Properties for High Temperatures (고온 소성용 TiO2-SiO2계 광촉매의 제조 및 특성)

  • 이명진;전애경;이지영;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • 제41권6호
    • /
    • pp.471-475
    • /
    • 2004
  • TiO$_2$, SiO$_2$, and PBA(Pseudo Boehemite Alumina) sol were prepared by sol-gel process. The particle sizes of these sol exhibited uniform 10∼30 nm. As the amount of SiO$_2$ sol increased, the temperature of phase transition (from anatase phase to rutile phase) was raised temperature than $600^{\circ}C$, which attributed to the enhanced photocatalyst properties. Also, the anatase phase was obtained with very small amount of the rutile phase from the addition of SiO$_2$ (10∼30 wt%) at annealing temperature of 120$0^{\circ}C$. The specimen with 20 wt% SiO$_2$ sol exhibited the maximum photocatalyst properties. But, the specimen with PBA sol did not affect photocatalytic activity due to the presence of rutile phase.

Effect of Flame Temperature on the Characteristics of Flame Synthesized TiO2 Nanoparticles (수소 확산화염에서 화염온도가 TiO2 나노입자의 합성에 미치는 영향)

  • Lee Gyo Woo;Lee Seung Bok;Lee Jongsoo;Bae Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제29권9호
    • /
    • pp.1013-1021
    • /
    • 2005
  • In this work, $TiO_2$ nanoparticles were synthesized using a N2-diluted hydrogen coflow diffusion flame. The effects of flame temperature on the crystalline structure and the size of formed nanoparticles were investigated. The maximum centerline temperature of the flame ranged from 1,920K for $H_2-only$ flame to 863k for $81\%\;N_2-diluted$ flame. The morphology and the crystal structure of $TiO_2$ nanoparticles were analyzed by a TEM and a XRD, respectively. The particle size distribution was also measured by using a scanning mobility particle size. (SMPS). The mean particle diameter was calculated from the TEM images depended on the flame temperature, having minimum at about 1,look. Based on the SMPS measurements, the mean particle diameter of $TiO_2$ nanoparticles at flame temperatures > 1,300K was smaller than that at flame temperatures < 1,300K. From the XRD analysis, it was evident that the anatase fraction increased with decreasing the flame temperature. The portion of anatase phase in $TiO_2$ nanoparticles might be greater than $80\%$ when the flame temperature was lower than 1,000K.

Photocatalytic removal of NOx using TiO2-coated zeolite

  • Mendoza, Joseph Albert;Lee, Dong Hoon;Kang, Joo-Hyon
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.291-296
    • /
    • 2016
  • Application of photocatalytic nanoparticles has been recently gaining an increased attention as air purifying material for sustainable urban development. The present work reports the photocatalytic removal of gaseous phase nitrogen oxides ($NO_x$) using $TiO_2$-coated zeolite to be applied as a filter media for the urban green infrastructure such as raingardens. The $TiO_2$-coated zeolite was synthesized by simple wet chemistry method and tested in a continuous-flow photo-reactor for its removal efficiency of $NO_x$ under different conditions of the weight percentage of $TiO_2$ coated on the zeolite, and gas retention time. The removal efficiency of $NO_x$ in general increased as the weight percentage of $TiO_2$ coated on the zeolite increased up to 15-20%. Greater than 90% of $NO_x$ was removed at a retention time of one minute using the $TiO_2$-coated zeolite ($TiO_2$ weight percentage = 20%). Overall, $TiO_2$-coated zeolite showed greater efficiency of $NO_x$ removal compared to $TiO_2$ powder probably by providing additional reaction sites from the porous structure of zeolite. It was presumed that the degradation of $NO_x$ is attributed to both the physical adsorption and photocatalytic oxidation that could simultaneously occur at the catalyst surface.

Investigation of Coke Formation on H-ZSM-5 Catalyst During Aromatization of C5 Paraffin and Olefin Using Optical and Fluorescence Microscopy

  • Chung, Young-Min
    • Clean Technology
    • /
    • 제19권3호
    • /
    • pp.327-332
    • /
    • 2013
  • Space- and time-resolved in-situ optical and fluorescence microspectroscopy techniques have been applied to investigate the coke formation during aromatization of C5 paraffin and olefin over H-ZSM-5 crystal. In-situ UV/vis absorption measurement offers space- and time-resolved information for the coke formation. Different coking trends have been observed with respect to the location of a crystal as well as the reactant types. From in-situ confocal fluorescence microspectroscopy study, it is revealed that the concentration of certain species photo-excited at 488 nm becomes high at the central region, whereas the compounds emitting fluorescence by 561 nm laser move towards the boundary region of the crystal. The different fluorescence patterns obtained varying excitation lasers suggest the existence of distinct fluorescence emitting species having different degree of coke growth.

Effect of Ag Addition on ZnO for Photo-electrochemical Hydrogen Production (ZnO를 이용한 광 전기화학적 수소제조 반응 시 Ag 첨가 영향)

  • Kwak, Byeong Sub;Kim, Sung-Il;Kang, Misook
    • Applied Chemistry for Engineering
    • /
    • 제28권2호
    • /
    • pp.245-251
    • /
    • 2017
  • In this study, ZnO, which is widely known as a non $TiO_2$ photocatalyst, was synthesized using coprecipitation method and Ag was added in order to improve the catalytic performance. The physicochemical characteristics of the synthesized ZnO and Ag/ZnO particles were checked using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL), and photocurrent measurements. The performance of catalysts was tested by $H_2$ production using the photolysis of $H_2O$ with MeOH. By adding Ag which plays a role as an electron capture on the ZnO catalyst, the performance increased due to the recombination of excited electrons and holes. In particular, $8.60{\mu}mol\;g^{-1}$ $H_2$ was produced after 10 h reaction over the 0.50 mol% Ag/ZnO.

Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell (염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석)

  • Jo, Seulki;Lee, Kyungjoo;Song, Sangwoo;Park, Jaeho;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

Effectiveness of Photocatalytic Techniques for Disinfection of Indoor Bioaerosols (실내 미생물 입자 살균을 위한 광촉매 기술의 효율)

  • Shin, Seoung-Ho;Kim, Mo-Geun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • 제16권7호
    • /
    • pp.785-791
    • /
    • 2007
  • The current study evaluated the technical feasibility of the application of titanium dioxide ($TiO_{2}$) photo-catalytic air cleaners for the disinfection of bioaerosols present in indoor air. The evaluation included both laboratory and field tests and the tests of hydraulic diameter (HD) and lamp type (LT). Disinfection efficiency of photocatalytic oxidation (PCO) technique was estimated by survival ratio of bacteria or fungi calculated from the number of viable cells which form colonies on the nutrient agar plates. It was suggested that the reactor coating with $TiO_{2}$ did not enhance the adsorption of bioaerosols, and that the UV irradiation has certain extent of disinfection efficiency. The disinfection efficiency increased as HD decreased, most likely due to the decrease in the light intensity since the distance of the catalyst from the light source increased when increasing the HD. It was further suggested that the mass transfer effects were not as important as the light intensity effects on the PCO disinfection efficiency of bioaerosols. Germicidal lamp was superior to the black lamp for the disinfection of airborne bacteria and fungi, which is supported by the finding that the disinfection efficiencies were higher when the germicidal lamp was used compared to the black lamp in the laboratory test. These findings, combined with operational attributes such as a low pressure drop across the reactor and ambient temperature operation, can make the PCO reactor a possible tool in the effort to improve indoor bioaerosol levels.