• Title/Summary/Keyword: Photo-Catalyst

Search Result 86, Processing Time 0.026 seconds

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition (HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성)

  • Park, Seungil;Ji, Hyung Yong;Kim, MyeongJun;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

Improved Photo Degradation of Rhodamine B Dye using Iron Oxide/Carbon Nanocomposite by Photo-Fenton Reaction

  • Kim, Min-Il;Im, Ji-Sun;In, Se-Jin;Kim, Hyuk;Kim, Jong-Gyu;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.195-199
    • /
    • 2008
  • A nanocomposite consisting of $Fe_3O_4$ and MWCNT was produced via sol-gel technique using $FeCl_3$ along with MWCNT by calcination at $300^{\circ}C$. The degradation effect of rhodamine B dye has been investigated under UV illumination in a darkroom. The degradation reaction was studied by monitoring the discoloration of dye as a function of irradiation time using UV-visible spectrophotometeric technique. The $Fe_3O_4$-MWCNT samples have continuous degradation ability under the UV illumination with the first order kinetics and the dye removal was better than in the pristine $Fe_3O_4$. The resultant composite catalyst was found to be efficient for the photo-Fenton reaction of the dye.

The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine (스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구)

  • Lee, Taek-Heon;Chun, Kwang-Min;Chun, Bae-Hyeock;Shin, Young-Gy
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF

Production Conditions of the Photo-catalyst for Removing Indoor Pollutants (실내오염물질 제거용 광촉매의 제조조건에 따른 반응활성 연구)

  • Nam, Ki Bok;Park, In Chul;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • This study was performed to study the photocatalyst for controlling the pollutant such as CO, C2H5OH and H2S by the UV light. This was shown in a catalyst having the same volume and the same surface area, that the structure in which the UV light to reach the interior structure exhibits more excellent activity. However, the activity of this activity of this photocatalyst removal of CO was very low. This problem can be solved by performing a reduction process by the addition of the precious metal series of Pt. Particularly, the amount of chemical species Pt0 incerased in the surface of Pt/TiO2 photocatalyst through the reduction process, which make the reaction activity of photocatalyst excellent to the removal of the CO.

Kinetic Study of the Visible Light-Induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/TiO2-MWCNT Catalyst

  • Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1589-1595
    • /
    • 2010
  • In order to effective degradation of organic dye both under visible light or ultrasonic irradiation, the MWCNTs (multiwalled carbon nanotube) deposited with Fe and $TiO_2$ were prepared by a modified sol-gel method. The Fe/$TiO_2$-MWCNT catalyst was characterized by surface area of BET, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) and ultraviolet-visible (UV-vis) spectroscopy. The low intensity visible light and low power ultrasound was as an irradiation source and the methylene blue (MB) was choose as the model organic dye. Then degradation experiments were carried out in present of undoped $TiO_2$, Fe/$TiO_2$ and Fe/$TiO_2$-MWCNT catalysts. Through the degradation of MB solution, the results showed the feasible and potential use of Fe/$TiO_2$-MWCNT catalyst under visible light and ultrasonic irradiation due to the enhanced formation of reactive radicals as well as the possible visible light and the increase of ultrasound-induced active surface area of the catalyst. After addition of $H_2O_2$, the MB degradation rates have been accelerated, especially with Fe/$TiO_2$-MWCNT catalyst, in case of that the photo-Fenton reaction occurred. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of Fe/$TiO_2$-MWCNT catalyst.

Rational design of rare-earth orthoferrite LnFeO3 via Ln variation towards high photo-Fenton degradation of organics

  • Thi T. N. Phan;Aleksandar N. Nikoloski;Parisa A. Bahri;Dan Li
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 2024
  • In this study, rare-earth orthoferrites LnFeO3 were synthesized using a facile hydrothermal reaction and their visible-light-induced photo-Fenton degradation of organics was optimized through Ln variation (Ln = La, Pr, or Gd). The morphological, structural, and chemical characteristics of as-prepared samples were examined in detail by using different methods, including XRD, SEM, TEM, XPS, etc. On the other side, under visible light illumination, the photo-Fenton-like catalytic activities of LnFeO3 were assessed in terms of the removal of selected organic models, i.e., pharmaceuticals (ketoprofen and tetracycline) and dyes (rhodamine B and methyl orange). As compared with PrFeO3 or GdFeO3, the sample of LaFeO3 displayed more structural distortion, larger specific surface area, and narrower band gap, resulting in its higher photo-Fenton-like catalytic activity toward the degradation of organics. In organic-containing solution, in which the initial solution pH = 5, catalyst dosage = 1 g/L and H2O2 concentration = 10 mM, 98.2% of rhodamine B, 31.1% of methyl orange, 67.7% of ketoprofen, or 96.4% of tetracycline was removed after 90-min exposure to simulated visible light. Our findings revealed that variation of Ln site on rare-earth orthoferrites was an effective strategy for optimizing their organic removal via visible-light-induced photo-Fenton reaction.

Renewable Monomer Based on Rosin in Photoinitiated Radical Polymerization

  • Shim, Sang-Yeon;Hong, Young-Taik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.192-197
    • /
    • 2000
  • Rosin moeity-containing monomer was prepared by the reaction of abietic acid with 2-hydroxyethyl methacrylate in tetrahydrofuran(THF) using diethyl azodicarboxylate as a catalyst. This new monomer was photo-polymerized to give thin films in the presence of a radical type initiator. The rate of photo-polymerization and amount of cured polymer were determined using the residual yield method. A thermogravimetric analysis of the cured polymer showed that the film was stable up to 170oC, at which point the polymer film has lost 10 wt % of its weight.

A Fundamental Study for a Photocatalytic Reactor Design (광촉매 반응치 설계를 위한 기초 연구)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • Because UV wavelength lights can activate photocatalysts, plasma is used as a light source of a photocatalytic reactor. Even though plasma has good intensity for photo reaction, substrate of catalyst coating was limited by the geometry of plasma generator. Usually bead type substrate was used for a pack bed type reactor. Honeycomb monolith type substrate was used with UV lamps instead plasma, due to the light penetration the honeycomb monolith length was too short to show good activity In this study a photocatalytic reactor, which is using a honeycomb monolith substrate, was investigated with plasma as an activation light source. As a parametric study the effects of 1311owing factors on plasma generation and power consumption are examined; supply voltage, substrate length, environment condition, catalyst loading and ratio. Using the test results, the practicability test was done with simulated synthetic gases representing bad smells and automotive exhaust gases.

PHOTOCATALYTIC REACTION OF $TiO_2$ FOR PURIFICATION OF AIR

  • Yin, X.J.;Cai, R.X.
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.336-339
    • /
    • 1999
  • Photo-excited $TiO_2$ surface has a strong ability to induce various chemical reactions. Our study concentrates mainly on the utilisation of light energy to induce reactive radicals for environmental protection application. For instance, we have successfully used TiO$_2$ to break down foul smelling substances in air. In order to retain and separate the $TiO_2$ catalyst from the reactants and products, $TiO_2$ was immobilised by fixing onto various substrates. $TiO_2$ catalyst coated onto glass, wall paper and painted panel was found to show significant deodorising effect. The deodorising effect continues as long as$TiO_2$ is exposed to light irradiation.

  • PDF