• Title/Summary/Keyword: Phosphorylation site

Search Result 103, Processing Time 0.021 seconds

Quercetin suppress CCL20 by reducing IκBα/STAT3 phosphorylation in TNF-α/IL-17A induced HaCaT cells (TNF-α/IL-17A 유도된 HaCaT 세포주에서 Quercetin의 IκBα/STAT3 인산화 조절에 의한 CCL20 발현 억제)

  • Kim, Mi Ran;Kim, Min Young;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.211-219
    • /
    • 2020
  • Quercetin is a polyphenol compound with excellent antioxidant and anti-inflammatory activity. However, little has been reported about the efficacy of quercetin to control psoriasis. Thus, we aimed to investigate the effect of quercetin to regulate psoriatic dermatitis with HaCaT cell lines activated by TNF-α and IL-17A, which are in vitro psoriasis skin models. When quercetin was treated with TNF-α-activated HaCaT cell line, inflammatory cytokine expressions such as IL-1α, IL-1β and IL-6 were reduced by 49.1±7.14, 42.8±8.16, and 34.5±2.52%, respectively. In addition, mRNA expression levels of IL-8 and CCL20 the chemokines that attract immune cells such as Th17 cells and dendritic cells to the inflammatory reaction site, were also reduced by 38.4±5.83 and 52.9±4.59% compared to the TNF-α treatment group. The expression of proteins KRT6A and KRT16, which was nonspecifically increased in psoriatic skin was also significantly suppressed. Moreover, phosphorylation of IκBα and STAT3 proteins activated by TNF-α was also significantly inhibited. After stimulating the HaCaT with IL-17A, known as another psoriasis-inducing cytokine, it was observed that IκBα mRNA expression decreased by 55.8±5.28%, and STAT3 phosphorylation was downregulated by 36.3±6.81%. Finally, after co-activation by TNF-α/IL-17A, quercetin inhibited all of IL-1α, IL-1β, IL-6, TNF-α and CCL20 gene expression. The above results strongly suggest that quercetin is a material that has not only anti-oxidant and anti-inflammatory activities, but also has an activity in improving psoriasis.

A New Approach for Practical Classification of Herbicide and for Effective Use by Two-dimensional Ordination Analysis (Two-Dimensional Ordination 분석법에 의한 제초제살초 Spectrum 분류와 효과적인 사용법)

  • Kim Soon Chul
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.147-159
    • /
    • 1983
  • In general, herbicides have been classified according to selectivity, mobility. time of application, methods of application, mode of action and chemical property and structure. However, there was no generally accepted classification system for practical use in the field. The primary processes affected by the majority of herbicides are the growth process through cell elongation and/or cell division, the photosynthetic process specifically the light reaction, the oxidative phosphorylation and the integrity of the membrane systems. The usual approach in the study of the mechanism by which herbicides kill or inhibit the growth of plants is to initially determine the morphological phototoxicity systems, The mechanism by which a herbicide kills a plant or suppresses its development is actually the resultant effect of primary and secondary(or side) effects. In most instances, the death of the plant is due to the secondary effects. To induce the desired response, a herbicide must be able to gain entry into the plants and once inside, to be transported within the plant to its site(s) of activity in concentrations great enough. Obstacles to the entry and movement of herbicides in plants are generally classified by leaf and soil obstacles, translocation obstacles and biochemical obstacles, and these obstacles are also strongly influenced by plant species and by environmental factors such as light, temperature, rainfall and relative humidity. And hence, in most instances, results obtained from laboratory or greenhous vary from those of field experiment. Author attempted to classify herbicides from the field experiment using the two-dimensional ordination analysis to obtain practical information for selecting effective herbicides or to choose effective herbicide combinations for increasing herbicidal efficacy or reducing the chemical cost. Based on this two-dimensional diagram, desired herbicides or combinations were selected and further investigated for the interaction effects whether these combinations are synergistic, additive or antagonistic. From the results, it was concluded that these new approach could possibly be give more comprehensive informations about effective use of herbicide than any other systems.

  • PDF

Sinapic acid induces the expression of thermogenic signature genes and lipolysis through activation of PKA/CREB signaling in brown adipocytes

  • Hossain, Monir;Imran, Khan Mohammad;Rahman, Md. Shamim;Yoon, Dahyeon;Marimuthu, Vignesh;Kim, Yong-Sik
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • Lipid accumulation in white adipose tissue is the key contributor to the obesity and orchestrates numerous metabolic health problems such as type 2 diabetes, hypertension, atherosclerosis, and cancer. Nonetheless, the prevention and treatment of obesity are still inadequate. Recently, scientists found that brown adipose tissue (BAT) in adult humans has functions that are diametrically opposite to those of white adipose tissue and that BAT holds promise for a new strategy to counteract obesity. In this study, we evaluated the potential of sinapic acid (SA) to promote the thermogenic program and lipolysis in BAT. SA treatment of brown adipocytes induced the expression of brown-adipocyte activation-related genes such as Ucp1, Pgc-1α, and Prdm16. Furthermore, structural analysis and western blot revealed that SA upregulates protein kinase A (PKA) phosphorylation with competitive inhibition by a pan-PKA inhibitor, H89. SA binds to the adenosine triphosphate (ATP) site on the PKA catalytic subunit where H89 binds specifically. PKA-cat-α1 gene-silencing experiments confirmed that SA activates the thermogenic program via a mechanism involving PKA and cyclic AMP response element-binding protein (CREB) signaling. Moreover, SA treatment promoted lipolysis via a PKA/p38-mediated pathway. Our findings may allow us to open a new avenue of strategies against obesity and need further investigation.

Wnt/$\beta$-catenin/Tcf Signaling Induces the Transcription of a Tumor Suppressor Axin2, a Negative Regulator of the Signaling Pathway

  • Jho, Eek-hoon;Tong Zhang;Claire Domon;Joo, Choun-Ki;Freund, Jean-Noel;Frank Costantini
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.108-108
    • /
    • 2001
  • Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of ${\beta}$-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6 kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved non-coding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by ${\beta}$-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility-shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6 kb genomic sequence was sufficient to direct the tissue specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.

  • PDF

A dominant negative OsKAT2 mutant delays light-induced stomatal opening and improves drought tolerance without yield penalty in rice

  • Kim, Jin-Ae;Moon, Seok-Jun;Lee, Yongsang;Min, Myung Ki;Yoon, In sun;Kwon, Taek-Ryoun;Kim, Beom-Gi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.110-110
    • /
    • 2017
  • Stomata are the main gateways for water and air transport between leaves and the environment. Inward-rectifying potassium channels regulate photo-induced stomatal opening. Rice contains three inward rectifying shaker-like potassium channel proteins, OsKAT1, OsKAT2 and OsKAT3. Among these, only OsKAT2 is specifically expressed in guard cells. Here, we investigated the functions of OsKAT2 in stomatal regulation using three dominant negative mutant proteins, OsKAT2(T235R), OsKAT2(T285A) and OsKAT2(T285D), which are altered in amino acids in the channel pore and at a phosphorylation site. Yeast complementation and patch clamp assays showed that all three mutant proteins lost channel activity. However, among plants overexpressing these mutant proteins, only plants overexpressing OsKAT2(T235R) showed significantly less water loss than the control. Moreover, overexpression of this mutant protein led to delayed photo-induced stomatal opening and increased drought tolerance. Our results indicate that OsKAT2 is an inward-rectifying shaker-like potassium channel that mainly functions in stomatal opening. Interestingly, overexpression of OsKAT2(T235R) did not cause serious defects in growth or yield in rice, suggesting that OsKAT2 is a potential target for engineering plants with improved drought tolerance without yield penalty.

  • PDF

NMR Signal Assignments of Human Adenylate Kinase 1 (hAK1) and its R138A Mutant (hAK1R138A)

  • Kim, Gilhoon;Chang, Hwanbong;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Adenylate kinase (AK) enzyme which acts as the catalyst of reversible high energy phosphorylation reaction between ATP and AMP which associate with energetic metabolism and nucleic acid synthesis and signal transmission. This enzyme has three distinct domains: Core, AMP binding domain (AMPbd) and Lid domain (LID). The primary role of AMPbd and LID is associated with conformational changes due to flexibility of two domains. Three dimensional structure of human AK1 has not been confirmed and various mutation experiments have been done to determine the active sites. In this study, AK1R138A which is changed arginine[138] of LID domain with alanine[138] was made and conducted with NMR experiments, backbone dynamics analysis and mo-lecular docking dynamic simulation to find the cause of structural change and substrate binding site. Synthetic human muscle type adenylate kinase 1 (hAK1) and its mutant (AK1R138A) were re-combinded with E. coli and expressed in M9 cell. Expressed proteins were purified and finally gained at 0.520 mM hAK1 and 0.252 mM AK1R138A. Multinuclear multidimensional NMR experiments including HNCA, HN(CO)CA, were conducted for amino acid sequence analysis and signal assignments of $^1H-^{15}N$ HSQC spectrum. Our chemical shift perturbation data is shown LID domain residues and around alanine[138] and per-turbation value(0.22ppm) of valine[179] is consid-ered as inter-communication effect with LID domain and the structural change between hAK1 and AK1R138A.

Effects of Ginsenosides on Acid Secretion in Gastric Cells Isolated from Human and Rabbit Gastric Mucosa (인체 및 토끼 위선세포에서 인삼사포닌의 위산분비 매개 신호전달체계에 미치는 영향)

  • Kim, Hye-Yeong;Kim, Sin-Il;Kim, Gyeong-Hwan
    • Journal of Ginseng Research
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 1998
  • Antiulcer effects of ginseng saponin, acidic polysaccharide and methanol extract of Panax ginseng in the patients and experimental animals were reported. Postulated action mechanisms of ginseng were histamine-Ht receptor blocking and increasing gastric blood flow In the present study, the effect of ginsenosides, the biologically active glycosides of ginseng, on gastric acid secretion was examined using gastric cells isolated from human and rabbit gastric mucosa. Ginseng saponin, ginsenoside $Rb_1$, $Rb_2$, $Rg_1$ and $Rh_2$ were tested in unstimulated as well as stimulated gastric cells. Histamine ($10^4$M) and 3-isobutyl-1-methylxanthine ($10^4$M) were used as secretagogues. To investigate the mechanism of ginsenosides on acid secretion, the levels of cAMP and cGMP were monitored in gastric cells. As a result, high concerltration(1mg/ml) of ginseng saponin showed 73-75% of stimulated acid secretion in control gastric cells. However, ginseng saponin had no effect on unstimulated acid secretion and the levels of cGMP and cAMP in gastric cells. Ginsenoside $Rb_1$, $Rb_2$ and $Rh_2$ significantly inhibited stimulated acid secretion. Gastric cGMP levels were increased by all ginsenosides tested while cAMP levels were increased by all ginsenosides in unstimulated state of gastric cells, but increased by ginsenosides ginsenoside $Rg_1$ and $Rh_2$in stimulated state of gastric cells. The results suggest that inhibition of ginseng saponin on gastric acid secretion represents a complex effect of individual ginsenosides, which produce a range of effect on acid secretion. The inhibition site of ginseng saponin on stimulated acid secretion is postulated as post cAMP levels in acid secretary pathway such as protein phosphorylation or proton pump. Nitric oxide may not be involved in the inhibitory effect of ginseng saponin on stimulated acid secretion.

  • PDF

Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix

  • You, Eunae;Jeong, Jangho;Lee, Jieun;Keum, Seula;Hwang, Ye Eun;Choi, Jee-Hye;Rhee, Sangmyung
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.192-197
    • /
    • 2022
  • Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, significantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.

Transcriptional Regulation of Human GD3 Synthase (hST8Sia I) by Fenretinide in Human Neuroblastoma SH-SY-5Y Cells (사람 신경모세포종 세포주 SH-SY5Y에서 fenretinide에 의한 GD3합성효소(hST8Sia I)의 전사조절기작)

  • Kang, Nam-Young;Kwon, Haw-Young;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1332-1338
    • /
    • 2010
  • To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in FenR-induced SH-SY5Y cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene showed that the -1146 to -646 region functions as the FenR-inducible promoter of hST8Sia I in SH-SY5Y cells. Site-directed mutagenesis indicated that the NF-&B binding site at -731 to -722 was crucial for the FenR-induced expression of hST8Sia I in SH-SY5Y cells. To investigate which signal transduction pathway was involved in FenR-stimulated induction of hST8Sia I in SH-SY5Y cells, we performed Western blot analysis using phospho-specific antibodies in order to measure their degree of regulatory phosphorylation. Phosphorylations of AKT and RelA (p65) subunit of NF-${\kappa}B$ were significantly elevated in cytosolic and nuclear fractions of FenR-stimulated SH-SY5Y cells, respectively, than in control or DMSO-treated SH-SY5Y cells. These results suggest that FenR induce transcriptional up-regulation of hST8Sia I gene expression through translocation of RelA (p65) subunit of NF-${\kappa}B$ to nucleus by AKT signal pathway in SH-SY5Y cells.

Structural basis of novel TRP14, thioredoxin-related protein that regulates TNE-$\alpha$ signaling pathways

  • Woo, Joo-Rang;Jeong, Woo-Jin;Rhee, Sue-Goo;Ryu, Seong-Eon
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.18-18
    • /
    • 2003
  • Thioredoxin (Trx) is a small redox protein that is ubiquitously distributed from achaes to human. In diverse organisms, the protein is involved in various physiological roles by acting as electron donor and regulators of transcription and apoptosis as well as antioxidants. Sequences of Trx within various species are 27~69% identical to that of E. coli and all Trx proteins have the same overall fold, which consists of central five β strands surrounded by four α helices. The N-terminal cysteine in WCGPC motif of Trx is redox sensitive and the motif is highly conserved. Compared with general cysteine, the N-terminal cysteine has low pKa value. The result leads to increased reduction activity of protein. Recently, novel thio.edoxin-related protein (TRP14) was found from rat brain. TRP14 acts as disulfide reductase like Trx1, and its redox potential and pKa are similar to those of Trx1. However, TRP14 takes up electrons from cytosolic thioredoxin reductase (TrxR1), not from the mitochondrial thioredoxin reductase (TrxR2). Biological roles of TES14 were reported to be involved in regulating TNF-α induced signaling pathways in different manner with Trx1. In depletion experiments, depletion of TRP14 increased TNF-α induced phosphorylation and degradation of IκBα more than the depletion Trx1 did. It also facilitated activation of JNK and p38 MAP kinase induced by TNF-α. Unlike Trx1, TRP14 shows neither interaction nor interference with ASK1. Here, we determined three-dimensional crystal structure of TRP14 by MAD method at 1.8Å. The structure reveals that the conserved cis-Pro (Pro90) and active site-W-C-X-X-C motif, which may be involved in substrate recognition similar to Trx1 , are located at the beginning position of strand β4 and helix α2, respectively. The TRP14 structure also shows that surface of TRP14 in the vicinity of the active site, which is surrounded by an extended flexible loop and an additional short a helix, is different from that of Trx1. In addition, the structure exhibits that TRP14 interact with a distinct target proteins compared with Trx1 and the binding may depend mainly on hydrophobic and charge interactions. Consequently, the structure supports biological data that the TRP14 is involved in regulating TNF-α induced signaling pathways in different manner with Trx1.

  • PDF