• Title/Summary/Keyword: Phosphorylation site

Search Result 103, Processing Time 0.019 seconds

Identification of Small GTPases That Phosphorylate IRF3 through TBK1 Activation Using an Active Mutant Library Screen

  • Jae-Hyun Yu;Eun-Yi Moon;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.48-58
    • /
    • 2023
  • Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.

Effect of Saussurea Lappa Root Extract on Proliferation and Hair Growth-related Signal Pathway in Human Hair Follicle Dermal Papilla Cells (당목향 뿌리 추출물의 인체 모유두세포 증식 및 모발 성장 관련 신호전달에 미치는 영향)

  • Chio, Hyoung-Chul;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.647-652
    • /
    • 2021
  • In this study, Saussurea Lappa roots were extracted using ethanol and n-hexane, and also the effects on proliferation of human hair dermal papilla cells and fibroblast and related signaling pathway were evaluated. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) assay was conducted for cell proliferation effect of Saussurea Lappa root extract, and extracellular signal-related kinase (ERK), serine/threonine protein kinase (Akt), wingless-related integration site (Wnt)/𝛽-catenin signaling pathway, and 5𝛼-reductase expression through western blot analysis were measured. Saussurea Lappa root extract significantly increased human hair dermal papilla cells and propagation of fibroblast, promoted phosphorylation of ERK and Akt that get involved in cell proliferation. Additionally, Saussurea Lappa root extract significantly decreased promotion of Akt phosphorylation and cell proliferation by MEK/ERK inhibitor PD98059 and PI3K/Akt inhibitor LY294002. Also, Saussurea Lappa root extract induced intranuclear 𝛽-catenin accumulation by promoting phosphorylation of 𝛽-catenin (Ser552, 675) through phosphorylation of GSK-3𝛽 (Ser9), and suppressed activation of 5𝛼-reductase type I and II. Overall, Saussurea Lappa root induces cell proliferation through vitalization of ERK and Akt route of human hair dermal papilla cells and fibroblast and apoptosis defense mechanism, and can be helpful in hair loss prevention and hair growth by vitalizing the 𝛽-catenin signaling pathway and inhibiting activation of 5𝛼-reductase, which can be used as a potential hair care products.

Analysis for nucleotide sequence of the small membrane (sM) protein gene of porcine epidemic diarrhea virus Chinju99 isolated in Korea

  • Yeo, Sang-Geon;Lee, Changhee
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.169-174
    • /
    • 2007
  • To provide information for the molecular pathogenesis and antigenic structures of Korean isolates of porcine epidemic diarrhea virus (PEDV), the small membrane (sM) protein gene of Chinju99 strain, which was previously isolated from piglets suffering from severe diarrhea was characterized and further analyzed with other PEDV strains. The sM gene of Chinju99 generated by reverse transcription and polymerase chain reaction had a single open reading frame with 231 bases consisting of 24.2% adenine, 18.6% cytosine, 18.1% guanine and 39.0% thymine nucleotides. Nucleotide sequence of the gene revealed 97.8% homology to those of Belgian strain CV777 and British strain Br1/87, and 97.0% to Chinese strain LZC. The gene encoded a protein with 76 amino acids, and putative amino acid sequence of the gene revealed 98.7% homology to those of CV777 and Br1/87, and 96.1% to LZC. The amino acids of Chinju99 sM gene consisted of mostly hydrophobic residues, and there were one potential N-myristylation site and one potential threonine (T)-linked phosphorylation site recognized. Also, there was a transmembrane region with 46 amino acids, and Chinju99 was more close to CV777 and Br1/87 than to LZC in phylogenetic analysis on the sM amino acid sequences.

Quercetin induces dual specificity phosphatase 5 via serum response factor

  • Kanokkan Boonruang;Ilju Kim;Chaeyoung Kwag;Junsun Ryu;Seung Joon Baek
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.508-513
    • /
    • 2023
  • The phytochemical quercetin has gained attention for its anti-inflammatory and anti-tumorigenic properties in various types of cancer. Tumorigenesis involves the aberrant regulation of kinase/phosphatase, highlighting the importance of maintaining homeostasis. Dual Specificity Phosphatase (DUSP) plays a crucial role in controlling the phosphorylation of ERK. The current study aimed to clone the DUSP5 promoter, and investigate its transcriptional activity in the presence of quercetin. The results revealed that quercetin-induced DUSP5 expression is associated with the serum response factor (SRF) binding site located in the DUSP5 promoter. The deletion of this site abolished the luciferase activity induced by quercetin, indicating its vital role in quercetin-induced DUSP5 expression. SRF protein is a transcription factor that potentially contributes to quercetin-induced DUSP5 expression at the transcriptional level. Additionally, quercetin enhanced SRF binding activity without changing its expression. These findings provide evidence of how quercetin affects anti-cancer activity in colorectal tumorigenesis by inducing SRF transcription factor activity, thereby increasing DUSP5 expression at the transcriptional level. This study highlights the importance of investigating the molecular mechanisms underlying the anti-cancer properties of quercetin, and suggests its potential use in cancer therapy.

The Inhibitory Effect of Pioglitazone on Agonist-dependent Vascular Contractility

  • Je, Hyun-Dong;Cha, Sung-Jae;Jeong, Ji-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.72-77
    • /
    • 2008
  • The present study was undertaken to determine whether pioglitazone treatment influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Pioglitazone decreased Rho-kinase activating agonist-induced contraction but not phorbol ester-induced contraction suggesting the least involvement of $Ca^{2+}$-independent thin filament regulation of contractility. Furthermore, pioglitazone decreased thromboxane $A_2$ mimeticinduced phosphorylation of MYPT1 at Thr855, the newly-highlighted site, instead of Thr696. In conclusion, this study provides the evidence and possible related mechanism concerning the vasorelaxing effect of pioglitazone as an antihypertensive on the agonist-induced contraction in rat aortic rings regardless of endothelial function.

3D-QSAR Study of Competitive Inhibitor for Acethylcholine Esterase (AChE) Nerve Agent Toxicity

  • San Juan, Amor A.;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • The cholinesterase-inhibiting organophosphorous (OP) compounds known as nerve agents are highly toxic. The principal toxic mechanism of OP compounds is the inhibition of acethylcholine esterase (AChE) by phosphorylation of its catalytic site. The reversible competitive inhibition of AChE may prevent the subsequent OP intoxication. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) was performed to investigate the relationship between the 29 compounds with structural diversity and their bioactivities against AChE. In particular, predictive models were constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The results indicate reasonable model for CoMFA ($q^{2}=0.453,\;r^{2}=0.697$) and CoMSIA ($q^{2}=0.518,\;r^{2}=0.696$). The presence of steric and hydophobic group at naphtyl moiety of the model may lead to the design of improved competitive inhibitors for organophosphorous intoxication.

Impairment of Polar Auxin Trnaport by Protein Kinase Inhibitors in Etiolated Pea Seedlings

  • Nam, Myung Hee;Kang, Bin G.
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.343-348
    • /
    • 1995
  • Treatment of Pisum sativum tissue with the protein kinase inhibitor staurosphorine resulted in impairment of 3H-indoleacetic acid transport in etiolated stem segments. The transport inhibitiion was accompanied by an increase in net uptake of labeled auxin in the tissue. The magnitude of auxin accumulation in tissue treated with the phytotropin N-1-naphthylphthalaic acid (NPA) which specifically blocks the efflux of auxin in the plasma membrane was reduced by the protein kinase inhibitor, suggesting that inhibition of protein phosphorylation could lead to hindrance of the auxin-exporting function of NPA receptors. The flavonoid genistein which is also known to inhibit protein kinase likewise reduced NPA-induced auxin accumulation. However, the flavonoid did not bring about auxin accumulation by itself, nor did it inhibit auxin transport. In view of the finding that the flavonoid also competes with NPA for a common binding site, a mechanism for the flavonoid effect on the NPA action will be proposed.

  • PDF

GSK3β Inhibitor Peptide Protects Mice from LPS-induced Endotoxin Shock

  • Ko, Ryeojin;Jang, Hyun Duk;Lee, Soo Young
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Background: Glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) is a ubiquitous serine/threonine kinase that is regulated by serine phosphorylation at 9. Recent studies have reported the beneficial effects of a number of the pharmacological $GSK3{\beta}$ inhibitors in rodent models of septic shock. Since most of the $GSK3{\beta}$ inhibitors are targeted at the ATP-binding site, which is highly conserved among diverse protein kinases, the development of novel non-ATP competitive $GSK3{\beta}$ inhibitors is needed. Methods: Based on the unique phosphorylation motif of $GSK3{\beta}$, we designed and generated a novel class of $GSK3{\beta}$ inhibitor (GSK3i) peptides. In addition, we investigated the effects of a GSK3i peptide on lipopolysaccharide (LPS)-stimulated cytokine production and septic shock. Mice were intraperitoneally injected with GSK3i peptide and monitored over a 7-day period for survival. Results: We first demonstrate its effects on LPS-stimulated pro-inflammatory cytokine production including interleukin (IL)-6 and IL-12p40. LPS-induced IL-6 and IL-12p40 production in macrophages was suppressed when macrophages were treated with the GSKi peptide. Administration of the GSK3i peptide potently suppressed LPS-mediated endotoxin shock. Conclusion: Collectively, we present a rational strategy for the development of a therapeutic GSK3i peptide. This peptide may serve as a novel template for the design of non-ATP competitive GSK3 inhibitors.

Studies on the Effect of the Phosphorylated IgE-Dependent Histamine-Releasing Factor on Na,K-ATPase Activity in HeLa Cell (HeLa세포에서 IgE-dependent Histamine-releasing Factor의 인산화가 Na,K-ATPase의 활성에 미치는 영향)

  • Kim Jung-A;Ha Hunjoo;Lee Kyunglim
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.184-188
    • /
    • 2005
  • IgE-dependent histamine-releasing factor (HRF) is found extracellularly to regulate the degranulation process of histamine in mast cells and basophils and known to play a predominant role in the pathogenesis of chronic allergic disease. HRF has been also identified in the intracellular region of the cell. Previously, we reported that HRF interacts with the 3rd cytoplasmic domain of the alpha subunit of Na,K ATPase and inhibits Na,K-ATPase activity. The predicated phosphorylation site in HRF by PKC was mapped to one serine residues (S98) by the computer analysis. In this study, we identified that S98 residue of HRF was phosphorylated using anti-HRFpS98 antibody which specifically recognizes the phosphorylated serine residue of HRF and HRFS98A mutant construct. We also performed $^{86}Rb^{+}-uptake$ assay to understand the role of HRF wild-type and HRFS98A mutants on the regulation of Na,K-ATPase activity. Dephosphorylation of HRF at serine 98 residue recovers slightly the inhibitory function of HRF, suggesting that phosphorylated HRF at serine 98 may not suppress the Na,K-hfpase activity.

AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2

  • Kim, Iljin;Choi, Sanga;Yoo, Seongkyeong;Lee, Mingyu;Park, Jong-Wan
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • The acute response to hypoxia is mainly driven by hypoxia-inducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB-REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB-REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions.