• Title/Summary/Keyword: Phosphorylation site

Search Result 103, Processing Time 0.024 seconds

Reduction of Ambiguity in Phosphorylation-site Localization in Large-scale Phosphopeptide Profiling by Data Filter using Unique Mass Class Information

  • Madar, Inamul Hasan;Back, Seunghoon;Mun, Dong-Gi;Kim, Hokeun;Jung, Jae Hun;Kim, Kwang Pyo;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.845-850
    • /
    • 2014
  • The rapid development of shotgun proteomics is paving the way for extensive proteome profiling, while providing extensive information on various post translational modifications (PTMs) that occur to a proteome of interest. For example, the current phosphoproteomic methods can yield more than 10,000 phosphopeptides identified from a proteome sample. Despite these developments, it remains a challenging issue to pinpoint the true phosphorylation sites, especially when multiple sites are possible for phosphorylation in the peptides. We developed the Phospho-UMC filter, which is a simple method of localizing the site of phosphorylation using unique mass classes (UMCs) information to differentiate phosphopeptides with different phosphorylation sites and increase the confidence in phosphorylation site localization. The method was applied to large scale phosphopeptide profiling data and was demonstrated to be effective in the reducing ambiguity associated with the tandem mass spectrometric data analysis of phosphopeptides.

Phosphorylation-Dependent Mobility Shift of Proteins on SDS-PAGE is Due to Decreased Binding of SDS

  • Lee, Chang-Ro;Park, Young-Ha;Kim, Yeon-Ran;Peterkofsky, Alan;Seok, Yeong-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2063-2066
    • /
    • 2013
  • While many eukaryotic and some prokaryotic proteins show a phosphorylation-dependent mobility shift (PDMS) on SDS-PAGE, the molecular mechanism for this phenomenon had not been elucidated. We have recently shown that the distribution of negatively charged amino acids around the phosphorylation site is important for the PDMS of some proteins. Here, we show that replacement of the phosphorylation site with a negatively charged amino acid results in a similar degree of the mobility shift of a protein as phosphorylation, indicating that the PDMS is due to the introduction of a negative charge by phosphorylation. Compared with a protein showing no shift, one showing a retarded mobility on SDS-PAGE had a decreased capacity for SDS binding. The elucidation of the consensus sequence (${\Theta}X_{1-3}{\Theta}X_{1-3}{\Theta}$, where ${\Theta}$ corresponds to an acidic function) for a PDMS suggests a general strategy for mutagenizing a phosphorylatable protein resulting in a PDMS.

Integrated Quantitative Phosphoproteomics and Cell-Based Functional Screening Reveals Specific Pathological Cardiac Hypertrophy-Related Phosphorylation Sites

  • Kwon, Hye Kyeong;Choi, Hyunwoo;Park, Sung-Gyoo;Park, Woo Jin;Kim, Do Han;Park, Zee-Yong
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.500-516
    • /
    • 2021
  • Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.

Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation

  • Yu, Un Young;Yoo, Byong Chul;Ahn, Jung-Hyuck
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2014
  • Overexpression of amyloid precursor protein with the Swedish mutation causes abnormal hyperphosphorylation of the microtubule-associated protein tau. Hyperphosphorylated isoforms of tau are major components of neurofibrillary tangles, which are histopathological hallmarks of Alzheimer's disease. Protein phosphatase 2A (PP2A), a major tau protein phosphatase, consists of a structural A subunit, catalytic C subunit, and a variety of regulatory B subunits. The B subunits have been reported to modulate function of the PP2A holoenzyme by regulating substrate binding, enzyme activity, and subcellular localization. In the current study, we characterized regulatory B subunit-specific regulation of tau protein phosphorylation. We showed that the PP2A B subunit PPP2R2A mediated dephosphorylation of tau protein at Ser-199, Ser-202/Thr-205, Thr-231, Ser-262, and Ser-422. Down-regulation of PPP2R5D expression decreased tau phosphorylation at Ser-202/Thr-205, Thr-231, and Ser-422, which indicates activation of the tau kinase glycogen synthase kinase 3 beta ($GSK3{\beta}$) by PP2A with PPP2R5D subunit. The level of activating phosphorylation of the $GSK3{\beta}$ kinase Akt at Thr-308 and Ser-473 were both increased by PPP2R5D knockdown. We also characterized B subunit-specific phosphorylation sites in tau using mass spectrometric analysis. Liquid chromatography-mass spectrometry revealed that the phosphorylation status of the tau protein may be affected by PP2A, depending on the specific B subunits. These studies further our understanding of the function of various B subunits in mediating site-specific regulation of tau protein phosphorylation.

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

Phosphorylation on the PPP2R5D B regulatory subunit modulates the biochemical properties of protein phosphatase 2A

  • Yu, Un-Young;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.263-267
    • /
    • 2010
  • To characterize the biochemical properties of the PP2A regulatory B subunit, PPP2R5D, we analyzed its phosphorylation sites, stoichiometry and effect on holoenzyme activity. PPP2R5D was phosphorylated on Ser-53, Ser-68, Ser-81, and Ser-566 by protein kinase A, and mutations at all four of these sites abolished any significant phosphorylation in vitro. In HEK293 cells, however, the Ser-566 was the major phosphorylation site after PKA activation by forskolin, with marginal phosphorylation on Ser-81. Inhibitory tyrosine phosphorylation on Tyr-307 of the PP2A catalytic C subunit was decreased after forskolin treatment. Kinetic analysis showed that overall PP2A activity was increased with phosphorylation by PPP2R5D phosphorylation. The apparent Km was reduced from $11.25\;{\mu}M$ to $1.175\;{\mu}M$ with PPP2R5D phosphorylation, resulting in an increase in catalytic activity. These data suggest that PKA-mediated activation of PP2A is enabled by PPP2R5D phosphorylation, which modulates the affinity of the PP2A holoenzyme to its physiological substrates.

Independent Regulation of Endothelial Nitric Oxide Synthase by Src and Protein Kinase A in Mouse Aorta Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • Endothelial nitric oxide synthase (eNOS) plays a critical role in vascular biology and pathophysiology. Its activity is regulated by multiple mechanisms such as calcium/calmodulin, protein-protein interactions, sub-cellular locations and phosphorylation at various sites. Phosphorylation of eNOS-Ser1177 (based on mouse sequence) has been identified as an important mechanism of eNOS activation. However, signaling pathway leading to it phosphorylation remains controversial. The regulation of eNOS-Ser1177 phosphorylation by Src and protein kinase A (PKA) was investigated in the present study using cultured mouse aorta endothelial cells. Expression of a constitutively active Src mutant in the cells enhanced phosphorylation of eNOS and protein kinase B (Akt). The Src-stimulated phosphorylation was not attenuated by the expression of a dominant negative PKA regulatory subunit. Neither activation nor inhibition of PKA activity had any significant effect on tyrosine phosphorylation of activation or inactivation site in Src. Based on the results of this study, it is suggested that Src/Akt pathway and PKA signaling may regulate eNOS phosphorylation independently. The existence of multiple mechanisms for eNOS phosphorylation may guarantee endothelial nitric oxide production in various cellular contexts which is essential for maintenance of vascular health.

The Phosphorylation Status of Merlin Is Important for Regulating the Ras-ERK Pathway

  • Jung, Ju Ri;Kim, Hongtae;Jeun, Sin-Soo;Lee, Joo Yong;Koh, Eun-Jeoung;Ji, Cheol
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.196-200
    • /
    • 2005
  • The neurofibromatosis type2 (NF2) tumor suppressor gene product, merlin, is structurally related to the ezrin-radixin-moesin (ERM) family of proteins that anchor the actin cytoskeleton to specific membrane proteins and participate in cell signaling. However, the basis of the tumor suppressing activity of merlin is not well understood. Previously, we identified a role of merlin as an inhibitor of the Ras-ERK signaling pathway. Recent studies have suggested that phosphorylation of merlin, as of other ERM proteins, may regulate its function. To determine whether phosphorylation of merlin affects its suppression of Ras-ERK signaling, we generated plasmids expressing full-length merlin with substitutions of serine 518, a potential phosphorylation site. A substitution that mimics constitutive phosphorylation (S518D) abrogated the ability of merlin to suppress effects of the Ras-ERK signaling pathway such as Ras-induced SRE transactivation, Elk-mediated SRE transactivation, Ras-induced ERK phosphorylation and Ras-induced focus formation. On the other hand, an S518A mutant, which mimics nonphosphorylated merlin, acted like wild type merlin. These observations show that mimicking merlin phosphorylation impairs not only growth suppression by merlin but also its inhibitory action on the Ras-ERK signaling pathway.

Mitogen-activated $p70^{s6k}$ signalling pathway

  • Han, Jeung-Whan
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.135-139
    • /
    • 1996
  • $p70^{s6k}$ lies on a $p21^{ras}$-independent signalling pathway and plays an important role in mitogenesis. Activation is associated with phosphorylation at multiple sites, four of which lie in an autoinhibitory region. The immunosuppressant rapamycin induces $p70^{s6k}$ inactivation through dephosphorylation of a second set of mitogen-induced sites. Here we identify these sites as $T_{229}$, $T_{389}$, and $S_{404}$. $T_{229}$ resides in the "T loop" of the catalytic domain, an essential phosphorylation site in other kinases. However, $p70^{s6k}$ inactivation by rapamycin most closely parallels $T_{389}$ dephosphorylation. Mutation of $T_{389}$ to alanine ablates kinase activity, whereas mutation to glutamic acid confers constitutive kinase activity and rapamycin resistance. indicating an essential role for phosphorylation at this site. $T_{389}$ resides in an unusual hydrophobic motif, not previously noted, between the catalytic and autoinhibitory domains. The importance of this site, and surrounding motif, is emphasized by its conservation in other kinases including homologues of $p70^{s6k}$ derived from such distantly related organisms as yeast and plant.

  • PDF

M Phase-Specific Phosphorylation of DNA Topoisomerase IIα in HeLa Cells

  • Bae, Young-Seuk;Lee, Sook-Ja;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.27-31
    • /
    • 1996
  • Using topoisomerase II (topo II) isozyme-specific antibodies, we investigated the phosphorylation of topo $II{\alpha}$ in mitotic HeLa cells. Topo $II{\alpha}$ was specifically modified in the mitotic cells, resulting in slow migration on SDS-polyacrylamide gel electrophoresis. To characterize the nature of this modification, we treated the nuclear extracts prepared from the mitotic cells with alkaline phosphatase. After the treatment with alkaline phosphatase, the slowly migrated band disappeared and instead a normal (170 kDa) topo $II{\alpha}$ band appeared. These results indicate that human topo $II{\alpha}$ is modified at a specific site(s) in M phase by phosphorylation, supporting the possibility that M phase-specific phosphorylation of topo II is critical for mitotic chromosome condensation and segregation.

  • PDF