Browse > Article
http://dx.doi.org/10.14348/molcells.2021.4002

Integrated Quantitative Phosphoproteomics and Cell-Based Functional Screening Reveals Specific Pathological Cardiac Hypertrophy-Related Phosphorylation Sites  

Kwon, Hye Kyeong (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Choi, Hyunwoo (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Park, Sung-Gyoo (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Park, Woo Jin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Kim, Do Han (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Park, Zee-Yong (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Abstract
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.
Keywords
cardiac hypertrophy; cell-based functional screening; neonatal rat ventricle cardiomyocytes; phosphorylation sites; quantitative phosphoproteomics; transgenic mice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin, C., Guo, X., Lange, S., Liu, J., Ouyang, K., Yin, X., Jiang, L., Cai, Y., Mu, Y., Sheikh, F., et al. (2013). Cypher/ZASP is a novel a-kinase anchoring protein. J. Biol. Chem. 288, 29403-29413.   DOI
2 Lin, X., Ruiz, J., Bajraktari, I., Ohman, R., Banerjee, S., Gribble, K., Kaufman, J.D., Wingfield, P.T., Griggs, R.C., Fischbeck, K.H., et al. (2014). Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP) mutations in the actin-binding domain cause disruption of skeletal muscle actin filaments in myofibrillar myopathy. J. Biol. Chem. 289, 13615-13626.   DOI
3 Long, J., Wei, Z., Feng, W., Yu, C., Zhao, Y.X., and Zhang, M. (2008). Supramodular nature of GRIP1 revealed by the structure of its PDZ12 tandem in complex with the carboxyl tail of Fras1. J. Mol. Biol. 375, 1457-1468.   DOI
4 Kwon, S.J. and Kim, D.H. (2009). Characterization of junctate-SERCA2a interaction in murine cardiomyocyte. Biochem. Biophys. Res. Commun. 390, 1389-1394.   DOI
5 Liao, K.A., Gonzalez-Morales, N., and Schock, F. (2016). Zasp52, a core Z-disc protein in Drosophila indirect flight muscles, interacts with α-actinin via an extended PDZ domain. PLoS Genet. 12, e1006400.   DOI
6 Chin, Y.R. and Toker, A. (2010). The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol. Cell 38, 333-344.   DOI
7 Choi, H., Lee, S., Jun, C.D., and Park, Z.Y. (2011). Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 2991-2997.   DOI
8 Shan, J., Betzenhauser, M.J., Kushnir, A., Reiken, S., Meli, A.C., Wronska, A., Dura, M., Chen, B.X., and Marks, A.R. (2010a). Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J. Clin. Invest. 120, 4375-4387.   DOI
9 Seko, Y., Kato, T., Haruna, T., Izumi, T., Miyamoto, S., Nakane, E., and Inoko, M. (2018). Association between atrial fibrillation, atrial enlargement, and left ventricular geometric remodeling. Sci. Rep. 8, 6366.   DOI
10 Selcen, D. and Engel, A.G. (2005). Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann. Neurol. 57, 269-276.   DOI
11 Shan, J., Kushnir, A., Betzenhauser, M.J., Reiken, S., Li, J., Lehnart, S.E., Lindegger, N., Mongillo, M., Mohler, P.J., and Marks, A.R. (2010b). Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J. Clin. Invest. 120, 4388-4398.   DOI
12 Shimizu, I. and Minamino, T. (2016). Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 97, 245-262.   DOI
13 Song, J., Gao, E., Wang, J., Zhang, X.Q., Chan, T.O., Koch, W.J., Shang, X., Joseph, J.I., Peterson, B.Z., Feldman, A.M., et al. (2012). Constitutive overexpression of phosphomimetic phospholemman S68E mutant results in arrhythmias, early mortality, and heart failure: potential involvement of Na+/Ca2+ exchanger. Am. J. Physiol. Heart Circ. Physiol. 302, H770-H781.   DOI
14 Patel, P.C., Fisher, K.H., Yang, E.C.C., Deane, C.M., and Harrison, R.E. (2009). Proteomic analysis of microtubule-associated proteins during macrophage activation. Mol. Cell. Proteomics 8, 2500-2514.   DOI
15 Weeland, C.J., van den Hoogenhof, M.M., Beqqali, A., and Creemers, E.E. (2015). Insights into alternative splicing of sarcomeric genes in the heart. J. Mol. Cell. Cardiol. 81, 107-113.   DOI
16 Scholten, A., Preisinger, C., Corradini, E., Bourgonje, V.J., Hennrich, M.L., van Veen, T.A.B., Swaminathan, P.D., Joiner, M.L., Vos, M.A., Anderson, M.E., et al. (2013). Phosphoproteomics study based on in vivo inhibition reveals sites of calmodulin-dependent protein kinase II regulation in the heart. J. Am. Heart Assoc. 2, e000318.   DOI
17 Song, H.K., Hong, S.E., Kim, T., and Kim, D.H. (2012). Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS One 7, e35552.   DOI
18 van der Meer, D.L.M., Marques, I.J., Leito, J.T.D., Besser, J., Bakkers, J., Schoonheere, E., and Bagowski, C.P. (2006). Zebrafish cypher is important for somite formation and heart development. Dev. Biol. 299, 356-372.   DOI
19 Ruppert, C., Deiss, K., Herrmann, S., Vidal, M., Oezkur, M., Gorski, A., Weidemann, F., Lohse, M.J., and Lorenz, K. (2013). Interference with ERKThr188 phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 110, 7440-7445.   DOI
20 Hong, C.S., Kwon, S.J., Cho, M.C., Kwak, Y.G., Ha, K.C., Hong, B., Li, H., Chae, S.W., Chai, O.H., Song, C.H., et al. (2008). Overexpression of junctate induces cardiac hypertrophy and arrhythmia via altered calcium handling. J. Mol. Cell. Cardiol. 44, 672-682.   DOI
21 Wu, R., Dephoure, N., Haas, W., Huttlin, E.L., Zhai, B., Sowa, M.E., and Gygi, S.P. (2011). Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol. Cell. Proteomics 10, M111.009654.   DOI
22 Fischer, T.H., Herting, J., Mason, F.E., Hartmann, N., Watanabe, S., Nikolaev, V.O., Sprenger, J.U., Fan, P., Yao, L., Popov, A.F., et al. (2015). Late INa increases diastolic SR-Ca2+-leak in atrial myocardium by activating PKA and CaMKII. Cardiovasc. Res. 107, 184-196.   DOI
23 Bass, G.T., Ryall, K.A., Katikapalli, A., Taylor, B.E., Dang, S.T., Acton, S.T., and Saucerman, J.J. (2012). Automated image analysis identifies signaling pathways regulating distinct signatures of cardiac myocyte hypertrophy. J. Mol. Cell. Cardiol. 52, 923-930.   DOI
24 Previs, M.J., Mun, J.Y., Michalek, A.J., Previs, S.B., Gulick, J., Robbins, J., Warshaw, D.M., and Craig, R. (2016). Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proc. Natl. Acad. Sci. U. S. A. 113, 3239-3244.   DOI
25 Rachlin, A.S. and Otey, C.A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. J. Cell Sci. 119, 995-1004.   DOI
26 Wheeler-Jones, C.P.D. (2005). Cell signalling in the cardiovascular system: an overview. Heart 91, 1366-1374.   DOI
27 Peter, A.K., Bjerke, M.A., and Leinwand, L.A. (2016). Biology of the cardiac myocyte in heart disease. Mol. Biol. Cell 27, 2149-2160.   DOI
28 Flashman, E., Redwood, C., Moolman-Smook, J., and Watkins, H. (2004). Cardiac myosin binding protein C: its role in physiology and disease. Circ. Res. 94, 1279-1289.   DOI
29 Frey, N. and Olson, E.N. (2002). Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J. Biol. Chem. 277, 13998-14004.   DOI
30 Xi, Y., Ai, T., De Lange, E., Li, Z., Wu, G., Brunelli, L., Kyle, W.B., Turker, I., Cheng, J., Ackerman, M.J., et al. (2012). Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction. Circ. Arrhythm. Electrophysiol. 5, 1017-1026.   DOI
31 Jia, W., Shaffer, J.F., Harris, S.P., and Leary, J.A. (2010). Identification of novel protein kinase A phosphorylation sites in the M-domain of human and murine cardiac myosin binding protein-C using mass spectrometry analysis. J. Proteome Res. 9, 1843-1853.   DOI
32 Dobrev, D. and Wehrens, X.H.T. (2014). Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ. Res. 114, 1311-1319.   DOI
33 Hong, C.S., Cho, M.C., Kwak, Y.G., Song, C.H., Lee, Y.H., Lim, J.S., Kwon, Y.K., Chae, S.W., and Kim, D.H. (2002). Cardiac remodeling and atrial fibrillation in transgenic mice overexpressing junctin. FASEB J. 16, 1310-1312.   DOI
34 Hong, C.S., Kwak, Y.G., Ji, J.H., Chae, S.W., and Kim, D.H. (2001). Molecular cloning and characterization of mouse cardiac junctate isoforms. Biochem. Biophys. Res. Commun. 289, 882-887.   DOI
35 Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.   DOI
36 Jentzsch, C., Leierseder, S., Loyer, X., Flohrschutz, I., Sassi, Y., Hartmann, D., Thum, T., Laggerbauer, B., and Engelhardt, S. (2012). A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J. Mol. Cell. Cardiol. 52, 13-20.   DOI
37 Kohli, S., Ahuja, S., and Rani, V. (2011). Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr. Cardiol. Rev. 7, 262-271.   DOI
38 McLane, J.S. and Ligon, L.A. (2015). Palladin mediates stiffness-induced fibroblast activation in the tumor microenvironment. Biophys. J. 109, 249-264.   DOI
39 Zhang, J., Petit, C.M., King, D.S., and Lee, A.L. (2011). Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membraneassociated guanylate kinase (MAGUK). J. Biol. Chem. 286, 41776-41785.   DOI
40 Reid, B.G., Stratton, M.S., Bowers, S., Cavasin, M.A., Demos-Davies, K.M., Susano, I., and McKinsey, T.A. (2016). Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J. Mol. Cell. Cardiol. 97, 106-113.   DOI
41 Wu, Y.B., Dai, J., Yang, X.L., Li, S.J., Zhao, S.L., Sheng, Q.H., Tang, J.S., Zheng, G.Y., Li, Y.X., Wu, J.R., et al. (2009). Concurrent quantification of proteome and phosphoproteome to reveal system-wide association of protein phosphorylation and gene expression. Mol. Cell. Proteomics 8, 2809-2826.   DOI
42 Yang, L., Dai, D.F., Yuan, C., Westenbroek, R.E., Yu, H., West, N., de la Iglesia, H.O., and Catterall, W.A. (2016). Loss of β-adrenergic-stimulated phosphorylation of Ca V 1.2 channels on Ser1700 leads to heart failure. Proc. Natl. Acad. Sci. U. S. A. 113, E7976-E7985.
43 Najm, P. and El-Sibai, M. (2014). Palladin regulation of the actin structures needed for cancer invasion. Cell Adh. Migr. 8, 29-35.   DOI
44 Byrum, S.D., Larson, S.K., Avaritt, N.L., Moreland, L.E., Mackintosh, S.G., Cheung, W.L., and Tackett, A.J. (2013). Quantitative proteomics identifies activation of hallmark pathways of cancer in patient melanoma. J. Proteomics Bioinform. 6, 43-50.   DOI
45 Eom, G.H., Cho, Y.K., Ko, J.H., Shin, S., Choe, N., Kim, Y., Joung, H., Kim, H.S., Nam, K.I., Kee, H.J., et al. (2011). Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123, 2392-2403.   DOI
46 Chang, Y.W., Chang, Y.T., Wang, Q., Lin, J.J.C., Chen, Y.J., and Chen, C.C. (2013). Quantitative phosphoproteomic study of pressure-overloaded mouse heart reveals dynamin-related protein 1 as a modulator of cardiac hypertrophy. Mol. Cell. Proteomics 12, 3094-3107.   DOI
47 Di Carlo, M.N., Said, M., Ling, H., Valverde, C.A., De Giusti, V.C., Sommese, L., Palomeque, J., Aiello, E.A., Skapura, D.G., Rinaldi, G., et al. (2014). CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 74, 274-283.   DOI
48 Zhou, Q., Chu, P.H., Huang, C., Cheng, C.F., Martone, M.E., Knoll, G., Diane Shelton, G., Evans, S., and Chen, J. (2001). Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J. Cell Biol. 155, 605-612.   DOI
49 Zhou, Q., Ruiz-Lozano, P., Martone, M.E., and Chen, J. (1999). Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J. Biol. Chem. 274, 19807-19813.   DOI
50 Michalek, A.J., Howarth, J.W., Gulick, J., Previs, M.J., Robbins, J., Rosevear, P.R., and Warshaw, D.M. (2013). Phosphorylation modulates the mechanical stability of the cardiac myosin-binding protein C motif. Biophys. J. 104, 442-452.   DOI
51 Nishida, K., Michael, G., Dobrev, D., and Nattel, S. (2010). Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace 12, 160-172.   DOI
52 Oh, J.G., Kim, J., Jang, S.P., Nguen, M., Yang, D.K., Jeong, D., Park, Z.Y., Park, S.G., Hajjar, R.J., and Park, W.J. (2013). Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J. Mol. Cell. Cardiol. 56, 63-71.   DOI
53 Elkins, J.M., Papagrigoriou, E., Berridge, G., Yang, X., Phillips, C., Gileadi, C., Savitsky, P., and Doyle, D.A. (2007). Structure of PICK1 and other PDZ domains obtained with the help of self-binding C-terminal extensions. Protein Sci. 16, 683-694.   DOI
54 Day, E.K., Sosale, N.G., and Lazzara, M.J. (2016). Cell signaling regulation by protein phosphorylation: a multivariate, heterogeneous, and contextdependent process. Curr. Opin. Biotechnol. 40, 185-192.   DOI
55 Lorenz, K., Schmitt, J.P., Schmitteckert, E.M., and Lohse, M.J. (2009). A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat. Med. 15, 75-83.   DOI
56 Lou, Q., Janardhan, A., and Efimov, I.R. (2012). Remodeling of calcium handling in human heart failure. Adv. Exp. Med. Biol. 740, 1145-1174.   DOI
57 Luck, K., Charbonnier, S., and Trave, G. (2012). The emerging contribution of sequence context to the specificity of protein interactions mediated by {PDZ} domains. FEBS Lett. 586, 2648-2661.   DOI
58 Lundby, A., Andersen, M.N., Steffensen, A.B., Horn, H., Kelstrup, C.D., Francavilla, C., Jensen, L.J., Schmitt, N., Thomsen, M.B., and Olsen, J.V. (2013). In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci. Signal. 6, rs11.   DOI
59 Dixon, R.D.S., Arneman, D.K., Rachlin, A.S., Sundaresan, N.R., Costello, M.J., Campbell, S.L., and Otey, C.A. (2008). Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. J. Biol. Chem. 283, 6222-6231.   DOI
60 Du, J., Wong, W.Y., Sun, L., Huang, Y., and Yao, X. (2012). Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. J. Am. Soc. Nephrol. 23, 1172-1180.   DOI
61 Faulkner, G., Pallavicini, A., Formentin, E., Comelli, A., Ievolella, C., Trevisan, S., Bortoletto, G., Scannapieco, P., Salamon, M., Mouly, V., et al. (1999). ZASP: a new Z-band alternatively spliced PDZ-motif protein. J. Cell Biol. 146, 465-475.   DOI
62 Feng, W., Shi, Y., Li, M., and Zhang, M. (2003). Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat. Struct. Biol. 10, 972-978.   DOI
63 Gokce, E., Shuford, C.M., Franck, W.L., Dean, R.A., and Muddiman, D.C. (2011). Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J. Am. Soc. Mass Spectrom. 22, 2199-2208.   DOI
64 Pollak, A.J., Haghighi, K., Kunduri, S., Arvanitis, D.A., Bidwell, P.A., Liu, G.S., Singh, V.P., Gonzalez, D.J., Sanoudou, D., Wiley, S.E., et al. (2017). Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc. Natl. Acad. Sci. U. S. A. 114, 9098-9103.   DOI
65 Pondugula, S.R., Brimer-Cline, C., Wu, J., Schuetz, E.G., Tyagi, R.K., and Chen, T. (2009). A phosphomimetic mutation at threonine-57 abolishes transactivation activity and alters nuclear localization pattern of human pregnane X receptor. Drug Metab. Dispos. 37, 719-730.   DOI
66 Xing, Y., Ichida, F., Matsuoka, T., Isobe, T., Ikemoto, Y., Higaki, T., Tsuji, T., Haneda, N., Kuwabara, A., Chen, R., et al. (2006). Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol. Genet. Metab. 88, 71-77.   DOI
67 Fu, Y., Westenbroek, R.E., Scheuer, T., and Catterall, W.A. (2013). Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response. Proc. Natl. Acad. Sci. U. S. A. 110, 19621-19626.   DOI
68 Goicoechea, S.M., Garcia-Mata, R., Staub, J., Valdivia, A., Sharek, L., Mcculloch, C.G., Hwang, R.F., Urrutia, R., Yeh, J.J., Kim, H.J., et al. (2014). Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 33, 1265-1273.   DOI
69 Gresham, K.S. and Stelzer, J.E. (2016). The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function. J. Physiol. 594, 669-686.   DOI
70 Guerra-Castellano, A., Diaz-Moreno, I., Velazquez-Campoy, A., De La Rosa, M.A., and Diaz-Quintana, A. (2016). Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. Biochim. Biophys. Acta 1857, 387-395.   DOI
71 Heineke, J. and Molkentin, J.D. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589-600.   DOI
72 Zheng, M., Cheng, H., Banerjee, I., and Chen, J. (2010). ALP / Enigma PDZLIM domain proteins in the heart. J. Mol. Cell Biol. 36, 96-102.
73 Yin, Z., Ren, J., and Guo, W. (2015). Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim. Biophys. Acta 1852, 47-52.   DOI
74 Yuan, C.C., Muthu, P., Kazmierczak, K., Liang, J., Huang, W., Irving, T.C., Kanashiro-Takeuchi, R.M., Hare, J.M., and Szczesna-Cordary, D. (2015). Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc. Natl. Acad. Sci. U. S. A. 112, E4138-E4146.
75 Zhang, J., Lanham, K.A., Heideman, W., Peterson, R.E., and Li, L. (2013). Statistically enhanced spectral counting approach to TCDD cardiac toxicity in the adult zebrafish heart. J. Proteome Res. 12, 3093-3103.   DOI
76 Zheng, M., Cheng, H., Li, X., Zhang, J., Cui, L., Ouyang, K., Han, L., Zhao, T., Gu, Y., Dalton, N.D., et al. (2009). Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum. Mol. Genet. 18, 701-713.   DOI
77 Huang, C., Zhou, Q., Liang, P., Hollander, M.S., Sheikh, F., Li, X., Greaser, M., Shelton, G.D., Evans, S., and Chen, J. (2003). Characterization and in vivo functional analysis of splice variants of cypher. J. Biol. Chem. 278, 7360-7365.   DOI
78 Otey, C.A., Rachlin, A., Moza, M., Arneman, D., and Carpen, O. (2005). The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int. Rev. Cytol. 246, 31-58.   DOI
79 Griggs, R., Vihola, A., Hackman, P., Talvinen, K., Haravuori, H., Faulkner, G., Eymard, B., Richard, I., Selcen, D., Engel, A., et al. (2007). Zaspopathy in a large classic late-onset distal myopathy family. Brain 130, 1477-1484.   DOI
80 Kranias, E.G. and Hajjar, R.J. (2012). Modulation of cardiac contractility by the phopholamban/SERCA2a regulatome. Circ. Res. 110, 1646-1660.   DOI
81 Mamidi, R., Gresham, K.S., Li, J., and Stelzer, J.E. (2017). Cardiac myosin binding protein-C Ser 302 phosphorylation regulates cardiac β-adrenergic reserve. Sci. Adv. 3, e1602445.   DOI
82 Adkins, G.B. and Curtis, M.J. (2015). Potential role of cardiac chloride channels and transporters as novel therapeutic targets. Pharmacol. Ther. 145, 67-75.   DOI
83 Beck, M.R., Dixon, R.D.S., Goicoechea, S.M., Murphy, G.S., Brungardt, J.G., Beam, M.T., Srinath, P., Patel, J., Mohiuddin, J., Otey, C.A., et al. (2013). Structure and function of Palladin's actin binding domain. J. Mol. Biol. 425, 3325-3337.   DOI
84 Benna, C., Peron, S., Rizzo, G., Faulkner, G., Megighian, A., Perini, G., Tognon, G., Valle, G., Reggiani, C., Costa, R., et al. (2009). Posttranscriptional silencing of the Drosophila homolog of human ZASP: a molecular and functional analysis. Cell Tissue Res. 337, 463-476.   DOI
85 Luther, P.K., Winkler, H., Taylor, K., Zoghbi, M.E., Craig, R., Padron, R., Squire, J.M., and Liu, J. (2011). Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proc. Natl. Acad. Sci. U. S. A. 108, 11423-11428.   DOI
86 MacLennan, D.H. and Kranias, E.G. (2003). Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4, 566-577.   DOI
87 Martinelli, V.C., Kyle, W.B., Kojic, S., Vitulo, N., Li, Z., Belgrano, A., Maiuri, P., Banks, L., Vatta, M., Valle, G., et al. (2014). ZASP interacts with the mechanosensing protein Ankrd2 and p53 in the signalling network of striated muscle. PLoS One 9, e92259.   DOI
88 Mattiazzi, A. and Kranias, E.G. (2014). The role of CaMKII regulation of phospholamban activity in heart disease. Front. Pharmacol. 5, 5.   DOI
89 Lindskog, C., Linne, J., Fagerberg, L., Hallstrom, B.M., Sundberg, C.J., Lindholm, M., Huss, M., Kampf, C., Choi, H., Liem, D.A., et al. (2015). The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics 16, 475.   DOI
90 Taus, T., Kocher, T., Pichler, P., Paschke, C., Schmidt, A., Henrich, C., and Mechtler, K. (2011). Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354-5362.   DOI
91 Wang, H.V. and Moser, M. (2008). Comparative expression analysis of the murine palladin isoforms. Dev. Dyn. 237, 3342-3351.   DOI
92 Sadoshima, J.I., Jahn, L., Takahashi, T., Kulik, T.J., and Izumo, S. (1992). Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol. Chem. 267, 10551-10560.   DOI
93 Schechter, M.A., Hsieh, M.K.H., Njoroge, L.W., Thompson, J.W., Soderblom, E.J., Feger, B.J., Troupes, C.D., Hershberger, K.A., Ilkayeva, O.R., Nagel, W.L., et al. (2014). Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure. PLoS One 9, e104157.   DOI
94 Respress, J.L., Van Oort, R.J., Li, N., Rolim, N., Dixit, S.S., Dealmeida, A., Voigt, N., Lawrence, W.S., Skapura, D.G., Skardal, K., et al. (2012). Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ. Res. 110, 1474-1483.   DOI
95 Kho, C., Lee, A., Jeong, D., Oh, J.G., Chaanine, A.H., Kizana, E., Park, W.J., and Hajjar, R.J. (2011). SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601-605.   DOI
96 Passier, R., Richardson, J.A., and Olson, E.N. (2000). Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle. Mech. Dev. 92, 277-284.   DOI
97 Brandenburg, S., Arakel, E.C., Schwappach, B., and Lehnart, S.E. (2016). The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochim. Biophys. Acta 1863(7 Pt B), 1882-1893.   DOI
98 Palermo, J., Gulick, J., Colbert, M., Fewell, J., and Robbins, J. (1996). Transgenic remodeling of the contractile apparatus in the mammalian heart. Circ. Res. 78, 504-509.   DOI
99 Parast, M.M. and Otey, C.A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J. Cell Biol. 150, 643-655.   DOI
100 Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., Nigg, E.A., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3.   DOI
101 Vattepu, R., Yadav, R., and Beck, M.R. (2015). Actin-induced dimerization of palladin promotes actin-bundling. Protein Sci. 24, 70-80.   DOI
102 Craig, R., Lee, K.H., Mun, J.Y., Torre, I., and Luther, P.K. (2014). Structure, sarcomeric organization, and thin filament binding of cardiac myosinbinding protein-C. Pflugers Arch. 466, 425-431.   DOI
103 te Velthuis, A.J.W., Isogai, T., Gerrits, L., and Bagowski, C.P. (2007). Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif. PLoS One 2, e189.   DOI
104 Tham, Y.K., Bernardo, B.C., Ooi, J.Y.Y., Weeks, K.L., and McMullen, J.R. (2015). Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch. Toxicol. 89, 1401-1438.   DOI
105 van Berlo, J.H., Elrod, J.W., Aronow, B.J., Pu, W.T., and Molkentin, J.D. (2011). Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. U. S. A. 108, 12331-12336.   DOI
106 Vatta, M., Mohapatra, B., Jimenez, S., Sanchez, X., Faulkner, G., Perles, Z., Sinagra, G., Lin, J.H., Vu, T.M., Zhou, Q., et al. (2003). Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular noncompaction. J. Am. Coll. Cardiol. 42, 2014-2027.   DOI
107 Vizcaino, J.A., Csordas, A., Del-Toro, N., Dianes, J.A., Griss, J., Lavidas, I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., et al. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447-D456.   DOI
108 Wang, C.K., Pan, L., Chen, J., and Zhang, M. (2010). Extensions of PDZ domains as important structural and functional elements. Protein Cell 1, 737-751.   DOI
109 Wang, N., Su, P., Zhang, Y., Lu, J., Xing, B., Kang, K., Li, W., and Wang, Y. (2014). Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology 39, 1290-1301.   DOI
110 Kooij, V., Saes, M., Jaquet, K., Zaremba, R., Foster, D.B., Murphy, A.M., dos Remedios, C., van der Velden, J., and Stienen, G.J.M. (2010). Effect of troponin I Ser23/24 phosphorylation on Ca2+-sensitivity in human myocardium depends on the phosphorylation background. J. Mol. Cell. Cardiol. 48, 954-963.   DOI
111 Kuzmanov, U., Guo, H., Buchsbaum, D., Cosme, J., Abbasi, C., Isserlin, R., Sharma, P., Gramolini, A.O., and Emili, A. (2016). Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy. Proc. Natl. Acad. Sci. U. S. A. 113, 12592-12597.   DOI
112 Rohini, A., Agrawal, N., Koyani, C.N., and Singh, R. (2010). Molecular targets and regulators of cardiac hypertrophy. Pharmacol. Res. 61, 269-280.   DOI
113 Rosas, P.C., Liu, Y., Abdalla, M.I., Thomas, C.M., Kidwell, D.T., Dusio, G.F., Mukhopadhyay, D., Kumar, R., Baker, K.M., Mitchell, B.M., et al. (2015). Phosphorylation of cardiac myosin-binding protein-C is a critical mediator of diastolic function. Circ. Heart Fail. 8, 582-594.   DOI
114 Rowin, E.J., Hausvater, A., Link, M.S., Abt, P., Gionfriddo, W., Wang, W., Rastegar, H., Estes, N.A.M., Maron, M.S., and Maron, B.J. (2017). Clinical profile and consequences of atrial fibrillation in hypertrophic cardiomyopathy. Circulation 136, 2420-2436.   DOI
115 Ryall, K.A., Bezzerides, V.J., Rosenzweig, A., and Saucerman, J.J. (2014). Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. J. Mol. Cell. Cardiol. 72, 74-84.   DOI
116 Jin, L. (2011). The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer. J. Muscle Res. Cell Motil. 32, 7-17.   DOI
117 Klaavuniemi, T., Alho, N., Hotulainen, P., Kelloniemi, A., Havukainen, H., Permi, P., Mattila, S., and Ylanne, J. (2009). Characterization of the interaction between Actinin-Associated LIM Protein (ALP) and the rod domain of α-actinin. BMC Cell Biol. 10, 22.   DOI
118 Cui, H., Schlesinger, J., Schoenhals, S., Tonjes, M., Dunkel, I., Meierhofer, D., Cano, E., Schulz, K., Berger, M.F., Haack, T., et al. (2016). Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res. 44, 2538-2553.   DOI
119 Klaavuniemi, T., Kelloniemi, A., and Ylanne, J. (2004). The ZASP-like motif in actinin-associated LIM protein is required for interaction with the α-actinin rod and for targeting to the muscle Z-line. J. Biol. Chem. 279, 26402-26410.   DOI
120 Kall, L., Canterbury, J.D., Weston, J., Noble, W.S., and MacCoss, M.J. (2007). Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923-925.   DOI
121 Klaavuniemi, T. and Ylanne, J. (2006). Zasp/Cypher internal ZM-motif containing fragments are sufficient to co-localize with α-actinin--analysis of patient mutations. Exp. Cell Res. 312, 1299-1311.   DOI
122 Li, J., Imtiaz, M.S., Beard, N.A., Dulhunty, A.F., Thorne, R., VanHelden, D.F., and Laver, D.R. (2013). β-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation. PLoS One 8, e58334.   DOI