• Title/Summary/Keyword: Phosphorus removal efficiency

Search Result 339, Processing Time 0.041 seconds

A Study on Removal of Organics, Nitrogen and Phoschorus of Domestic Wastewater in Pilot-Scale Upflow Packed Bed Column Reactor (Pilot 규모의 상향류식 충전탑 반응기를 이용한 생활오수의 유기물 및 질소, 인 처리에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.191-196
    • /
    • 2007
  • This study used biofilm process, which needs simple operation, maintenance and smaller facility area than conventional activated sludge process with the small plant operation, in the treatment of increasing sewage with the rapid industrial growth. The reactor used in this study consists of one anaerobic and one aerobic chamber filled with waste ceramic and waste vinyl as media and the treated sewage was from restaurant source. The experiment was scaled up from lab. to pilot scale and lasted for about 100 days. We focused on the removal efficiency of organics, nitrogen and phosphorus with constant HRT and continuous aeration. The removal efficiency of $BOD_5$ and SS were 94.33% and 87.77% respectively, which was a satisfaction level. However the removal efficiency of $COD_{Cr}$ was 81.46% somewhat below the desired level of 90%, and that of T-N and T-P showed 71.92% and 21.10% respectively, that was below the expected value. The removal efficiency of $COD_{Cr}$ and T-N in the pilot scale was about 10% low compared with the lab.-scale.

A study on advanced treatment of domestic wastewater nutrient removal by using Biosorption (생흡착을 이용한 생활하수의 염양염류제거에 관한 고도처리 연구)

  • Park, Ju-Seok;Kim, Hyun-Kab;An, Chang-Hwan;Whang, Jung-Ki;Ahn, Sang-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.29-35
    • /
    • 1999
  • The purpose of this study is to remove the organics, nitrogen and phosphorus using biosorption for the domestic sewage. The new process using biosorption is based on the methods of contact-stabilization, which remove the organics by absorbing them to the surface of the microorganism in the activated sludge. This process consists of biosorption reactor, biosorption clarifier, nitrifying reactor, nitrifying clarifier, denitrifying reactor, phosphorus uptake(polishing) reactor and final clarifier. The efficiency of removal could be reached 91% for organics, 76% for nitrogen, 90% for phosphorus in Eujungbu pilot plant. We operated the plant which irrigated $10m^3$ per day for sewage. During our operation the HRT(Hydraulic Retention time) was maintained for 10.5hr, but it could be reduced as 8.5hr according to our operation results.

  • PDF

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

TREATMENT OF HIGH-CONCENTRATION SWINE WASTEWATER BY ANAEROBIC DIGESTION AND AN AQUATIC PLANT SYSTEM

  • Kim, B.U.;Kwon, J.H.
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.134-142
    • /
    • 2006
  • The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system was investigated. Anaerobic digestion of swine wastewater gave volatile solids (VS) removal efficiencies of 43.3%, 52.1% and 54.5% for hydraulic retention times (HRTs) of 20, 30, 40 days, respectively. The removal efficiencies of VS, total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) decreased with increasing VS volumetric loading rate (VLR). Higher organic removal efficiency was observed at longer HRTs for the same VS volumetric loading rate. As VS volumetric loading rate increased, biogas production increased and the methane content of the biogas decreased. Experiments using duckweed (Lemna species) as an aquatic macrophyte gave the following results. In the case of nitrogen, removal efficiency was above 60% and effluent concentration was below 10.0 mg/L when the influent ammonia-N loading was about $1.0\;g/m^2/day$. In the case of phosphorus, removal efficiency was above 55% and effluent concentration was below 2.0 mg/L when the influent $PO_4$-P loading was about $0.15\;g/m^2/day$. In addition, crude protein and phosphorus content of duckweed biomass increased from 15.6% to 41.6% and from 0.8% to 1.6%, respectively, as the influent nutrient concentration increased. The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system offers good performance in terms of organics and nutrient removal for relatively low operation and maintenance costs. The results indicate that under appropriate operational conditions, the effluent quality is within the limits set by Korean discharge criteria.

Evaluation on Design Factors of Electrolytic Flotation Reactor by Measuring Polarization Curve (분극곡선 측정을 통한 전해부상조의 설계인자 평가)

  • Lim, Bong-Su;Jin, Jing-Zhu;Choi, Chan-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.244-250
    • /
    • 2007
  • This study was carried out to obtain the optimum design factors for an eletrolytric flotation reactor. When the effluent of the leachate treatment facility was treated under the condition of 10 volts, 30 minutes, at the Al-Al electrode system; COD removal efficiency was 45%, and total phosphorus removal efficiency was 98%. The high removal efficiency was caused by the fact that phosphate was removed by leaching $Al^{3+}$ from two electrodes. The leachate containing high ammonium nitrogen concentration was treated by a batch test under the condition of 60 minutes reaction time and added chloride ion; ammonium nitrogen removal efficiency was 89%. This high efficiency was affected by added chloride ion to wastewater. To find the optimum current density and voltage of the leachate containing chloride ion (ratio of $Cl^-/NH_4-N$ is 11) a electrochemical polarization curve was used. These values were found to be $4.5mA/cm^2$ and about 2.1 V, respectively. When C-Al electrode system was used at a batch test, the total nitrogen removal efficiency was increased by 1.8 to 3.3 times, compared to Al-Al electrode system due to high $Cl_2$ gas production.

Advanced Sewage Treatment by the Modified SBR(Sequencing Batch Reactor) Process (변형 연속회분식 반응기를 이용한 오수의 고도처리)

  • 김병군;서인석;홍성택;정위득
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2002
  • This study was performed to treat a sewage at the upper stream of dam using modified sequencing batch reactor, During the operating period, average $COD_{cr}$, removal efficiency was about 85% but average T-N and ${PO_4}^{3-}-P$ removal efficiencies were 43% and 30% respectively. Because the organic matter was very low compared with nitrogen and phosphorous in influent($BOD_{5}/{NH_4}^{+}-N{\;}={\;}2,{\;}BOD_{5}/{PO_4}^{3-}-P{\;}={\;}15.6$), nitrogen and phosphorus removal efficiency was relatively low. Average nitrogen removal efficiency was 50 % at $10^{\circ}C$ or above and it was 36 % at $10^{\circ}C$ or below. As reactor was located in outdoor without any thermostat, temperature decreased at least $2.4^{\circ}C$ in the winter season. Therefore, if we would apply this modified sequencing batch reactor to sewage which concentration of organic matter was very low compared with nitrogen and phosphorous, we have to addition of external carbon and installation of any thermostat.

The Effect of Clarification by Aquatic Plant on Livestock Wastewater (수생식물에 의한 축산폐수의 오염물질 감소 효과)

  • Jeong, K.H.;Kim, W.H;Kim, M.J.;Seo, S.;Choi, G.C.;Cho, Y.M.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.6 no.2
    • /
    • pp.83-89
    • /
    • 2000
  • In general, livestock wastewater consists of many pollutants such as nitrogen, phosphorus, carbonic compounds and inorganic substances. Most carbonic and organic compounds are sufficiently removed by conventional secondary processes, but nitrogen, phosphorus and soluble inorganic compounds are little removed by traditional clarification process. These remained substances in wastewater, for instances, phosphorus and nitrogen are efficiently eliminated by advanced wastewater treatment or botanical removing process. Concentrations of $BOD_s$, SS, T-N and T-P in influent livestock wastewater used in this study were 126mg/l, 115mg/l, 45mg/l and 13mg/l, respectively. The hydraulic retention time(HRT) of wastewater was about 10 days in the pond packed with aquatic plants. A water-hyacinth and a water-dropwort were used as an experimental stuff plant. The removal ratios of nitrogen was 44.3% for the water-hyacinth and 40.2% for the water-dropwort. The removal efficiency of phosphorus in experimental ponds reached by 57.9% for the water-hyacinth and 58.5% for the water-dropwort for 10 days, respectively. Removal ratios of BODs and SS of livestock wastewater for 10 days were reached by 80.1%, 91.0% for he water-hyacinth, respectively. At the same condition, the removal ratios of BODs and SS were reached by 75.0%, 87.6% for the water-dropwort, respectively.

  • PDF

Treatment Characteristics Using Full-Scale SBR System (Full-Scale SBR 공법을 이용한 처리특성)

  • Choo, Tai-Ho;Lee, Yong-Doo;Cho, Yong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.34-40
    • /
    • 2006
  • In this study, the treatment of organic matters and nutrients like Nitrogen and Phosphorus with sequencing batch reactors (SBR) was conducted. The following conclusions can be summarized from the study. The influent BOD concentration was varied 19.6 to 40.0mg/L and the effluent was 3.0 to 14.8mg/L. The variations of BOD removal efficiency during the experimental period was $47.9{\sim}88.4%$ and the average was 80.8%. The average removal efficiency was stabilized with the passage of time. Also the COD concentration was flowed into as $12.2{\sim}32.0mg/L$ and the effluent concentration was varied 3.3 to 18.6 mg/L, and then the average COD removal efficiency was 57.3%(minimun 19.2% and maximum 78.6%). But fortunately, the COD removal efficiency was also stabilized as 70.2% after 79days. In the case of T-N, the influent concentration range was $7.53{\sim}14.99mg/L$ and the effluent concentration was 6.59mg/L(the average removal efficiency was 40.3%) until the first experiment time 79days. But after normalizing the system, it was 4.44mg/L (the average removal efficiency was 56.4%). Also the influent T-P concentration was varied from 0.77 to 1.91mg/L and the effluent concentration was $0.26{\sim}1.53mg/L$. The removal efficiency was varied from 5.3 to 71.7%. considerably, therefore the average removal efficiency was 42.6%. The reason was concluded that the sludge wasn't discharged for increasing MLSS concentration.

  • PDF

Analysis of Treatment Efficiency according to Open-water in Constructed Wetland (인공습지 내 개방수역 조성에 따른 처리효율분석)

  • Kim, Hyung-Chul;Yoon, Chun-Gyeong;Um, Han-Yong;Kim, Hyung-Jung;Haam, Jong-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.709-717
    • /
    • 2008
  • The field scale experiment which is constructed with four sets (0.88 ha for each set) of wetland (0.8 ha) and pond (0.08 ha) systems was performed to examine the effect of plant coverage on the constructed wetland performance and to recommend the optimum development and management of macrophyte communities. After six growing seasons of wetlands, plant coverage was about 100%. And the concentration of DO showed low value (1.0~5.4 mg/L). This is caused by a blighted plant consumed dissolved oxygen with decay in water column. As the result, water column went to be anaerobic conditions and T-N removal rate are 58~67%. Dead vegetation increased nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. However, wetland released phosphorus caused by a blighted plant and accumulation, the removal rate of phosphorus might be decreased. To rise of DO concentration, the three open-waters were constructed in cell 3 and 4. Cell 3 has two open-waters (width 10 m, depth 1.8 m) and cell 4 has one open-water (width 20 m, depth 1.8 m). As the result, DO concentration and treatment efficiency of nutrient and BOD were improved. In case that constructed wetland is operated for a long time, physical circulation structure such as open water help continuous circulation of aerobic and anaerobic conditions. Through the constructed open-water, treatment efficiency of phosphorus and nitrogen in wetland could be improved effectively.