• Title/Summary/Keyword: Phosphorus level

Search Result 709, Processing Time 0.029 seconds

Physicochemical Characteristics and Analysis of Pollution Potential in the Sediments of the Rivers Flowing into the Saemangeum Reservoir (새만금호 유입 하천 하상 퇴적물의 물리화학적 특성과 오염도 분석)

  • Oh, Kyoung-Hee;Yu, Mi-Na;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.861-867
    • /
    • 2011
  • In order to understand the extent of contamination of the sediments on the Mankyoung and Dongjin Rivers flowing into the Saemangeum Reservoir, the concentrations of ignition loss (IL), COD, total nitrogen (T-N), total phosphorus (T-P), and heavy metals (As, Cd, Cr, Pb, Zn) were measured. The average concentrations of IL, COD, and T-P were 2.40 (${\pm}2.18$)%, 2.97 (${\pm}3.06$) mg/g sediment, 0.370 (${\pm}0.351$) mg/g sediment, respectively, showing the extent of contamination is not serious. However, the concentrations of these parameters in the samples taken in year 2009 were higher than those in year 2008, indicating the contamination of sediments goes on gradually. The concentrations of T-N were in the range of 0.59~13.11 mg/g sediment with variation of locations and seasons. It was determined that the T-N contamination is serious when the concentrations were compared with the dredging guidelines of sediments in the Korean freshwaters, indicating the countermeasures are required to maintain the water quality of the Saemangeum Reservoir. The concentrations of heavy metals except chromium did not exceed the worrisome level of soil contamination stipulated by the Soil Environment Conservation Act of Korea. The high concentration of chromium to be concerned in some samples from the upstream of Mankyoung River requires source analysis and countermeasure to control the contamination.

Analysis of Physicochemical Characteristics of Suspended Sediments Flowing into the Saemangeum Reservoir in the Summer (하절기 새만금호 유입유사의 물리화학적 특성 분석)

  • Oh, Kyoung-Hee;Chung, Se-Woong;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.99-106
    • /
    • 2015
  • To estimate the effects of suspended sediments flowing into the Saemangeum Reservoir on the extent of contamination of the reservoir, the suspended sediments were collected with sediment traps, which were installed from the upstream of the Mankyung and Dongjin Rivers to estuary of the reservoir, respectively, and the sedimentation rates and the chemical characteristics of suspended sediments were analyzed. The sedimentation rates in the Mankyung and Dongjin Rivers were ranged from 0.01~5.06 and $0.01{\sim}8.75kg/m^2/day$, respectively. Those were higher to the upstream of rivers, and were mainly affected by flood events. The concentrations of organic matters were from 3.3 to 9.6 times higher than those in the stream sediments and were higher after flood season, indicating the contaminants come from the non-point sources on the basin. The concentrations of total nitrogen and total phosphorus in the suspended sediments showed the same trend with the organic matters. These results indicate that the suspended sediments from the basin of the Mankyung and Dongjin Rivers are highly contaminated and the countermeasures to manage the sources of contamination on the basin are required to maintain the water quality of the Saemangeum Reservoir.

Characteristics of $NH_3$-N removal in nitrification reactor according to organic loading rate (질산화 반응조에서 유기물 부하에 따른 암모니아 제거 특성)

  • Kang, Min-Koo;Kim, Keum-Yong;Kim, Seung-Ha;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.7-15
    • /
    • 2009
  • The objective of this study was to investigate difference in nitrogen, organic, phosphorus and $NH_3$-N removal efficiency according to organic loading, comparing M-DEPHANOX process which has two nitrification reactor with M-eBNR process which has one nitrification reactor. As a result of this study, $NH_3$-N removal efficiency of M-DEPHANOX and M-eBNR resulted in average level of 91.8%, 96.9%, respectively. M-DEPHANOX and M-eBNR processes showed high removal efficiency in view of $NH_3$-N removal efficiency. Comparing organic removal efficiency by M-DEPHANOX and M-eBNR processes, the average removal efficiency in terms of TCOD, SCOD was 84.1%, 78.2% and 83.4%, 75.6%. Also, the results that observed about $NH_3$-N removal efficiency regarding organic loading revealed that nitrification reactor of RBC type are little influenced by flowing organic without precipitating at settling tank. Therefore, although inflow characteristics of municipal wastewater changes, M-eBNR process appeared to remove $NH_3$-N reliably.

Prediction of chemical fertilizer consumption in relation to soil fertility improvement and various agriculturai technical factors (토양비옥도(土壤肥沃度) 증진(增進) 및 제(諸) 기술요인(技術要因)에 의(依)한 비료(肥料) 소비추세(消費趨勢) 전망(展望))

  • Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.3
    • /
    • pp.183-199
    • /
    • 1976
  • 1. The cultivated land in Korea has originally low fertility resulting in high dependence to fertilizers. 2. The total fertilizer requirement calculated by the Office of Rural Development (ORD) in 1976 was about 1,153 thousand mts, and the total amount of supply planned by the Ministry of Agriculture and Fishery was 1,010 thoushand mts which is close to the amount calculated by ORD. However, there is some gap between the amount of recommended (N, 11.6; $P_2O_5$: $K_2O$, 7.3kg/10a> and supply planned (N, 12.0; $P_2O_5$, 6.3; $K_2O$. 4.8kg/10a) fertilizers for each elements per unit area 3. For 15 years from 1960 to 1975 the fertilizer consumption of nitrogen was roughly increased from 200,000 mts to 500,000 mts; phosphorus, from 50,000 to 250,000 mts; potassium, from 10, 000 to 170,000 mts; accounting 2.5, 5, and 17 times of increase respectively. 4. The total fertilizer consumption for 5 years from 1967 to 1971 was about 100,000 mts and another 5years from 1971 to 1975 was 300,000 mts indicating three times increase. 5. The direct factors influenced to the increase of fertilizer consumption in recent years are 1) the dissemination of high yielding Tongil type rice varieties which are resistant to heavy fertilization 2) high price policy for agricaltural products 3) increased cultivation of vegetables:, fruits, and forages which require high level of fertilizers. The indirect factors are 1) dissemination of new improved agricultural techniques, 2, improvement of cultivated land conditions through irrigation system and land reform, 3) increased supply of silicate fertilizers, and 4) increase of farm income. 6. The percentage of total fertilizer consumption by rice (32%) and barley (25%) is about 57%. The ratio of total fertilizer consumption by vegetables and forages is expected to increase greatly. 7. Based on the increasing tendency of cultivated land and yield per unit area for last 10 years in each crop, total fertilizer consumptions in 1980, 1990, and 2000 year are estimated to 1,290,000, 1,580,000 and 1,870,000 mts respectively.

  • PDF

Dependence of 0.01M CaCl2 Soluble Phosphorus on Extractable P and P Sorptivity in Upland Soil (밭토양(土壤)에서 유효린산함량(有效燐酸含量)과 인산흡수능(燐酸吸收能)에 따른 0.01M CaCl2 가용(可溶) 인산농도(燐酸濃度) 변화(變化))

  • Yoon, Jung-Hui;Jung, Beung-Gan;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.266-270
    • /
    • 1998
  • The identification of soil P level that exceed crop requirement is a prerequisite in implementing sustainable management of fertilizer and manure P to prevent soil and freshwater from contamination. To investigate the relationship between 0.01M $CaCl_2$ soluble P, and available P and P sorption capacity of 40 soils, P content and P sorptivity were analyzed. Single linear relationship revealed the dependence of 0.01M $CaCl_2-P$ on available P($r^2=0.479$), bioavailable P($r^2=0.281$), P sorption($r^2=-0.465$) and P absorption coefficient($r^2=-0.056^{NS}$). Thus available P as $P_2O_5$(AVP) and P sorption (PS) were most important factors in determining the concentration of 0.01M $CaC1_2-P$($CaC1_2-P$). In multinomial equation related $CaC1_2-P$ with AVP and PS, the determination coefficient was improved to 0.745. The logarithm of $CaC1_2-P$ was linearly related to AVP/PS. Consequently, the equation, $0.01M\;CaCl_2-P=0.1284e^{0.3288AVP/PS}$ could be suggested to estimate the concentration of P in 20mL of 0.01M $CaCl_2$ solution containing 2g of soil shaken for 17 hours.

  • PDF

Comparison of Growth Characteristics and Ginsenosides Content of 6-Year-Old Ginseng (Panax ginseng C. A. Meyer) by Drainage Class in Paddy Field (논토양에서 배수등급별 6년근 인삼의 생육특성 및 진세노사이드 함량 비교)

  • Lee, Sung-Woo;Park, Jin-Myeon;Kim, Geum-Soog;Park, Kee-Choon;Jang, In-Bok;Lee, Seung-Ho;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • To develop the practical cultivation for paddy field, we investigated the properties of paddy soil, growth characteristics and ginsenoside content of 6-year-old ginseng, Cheonpung variety between poor drainage class (PDC) and imperfect drainage class (IDC). Groundwater level in PDC showed monthly small changes of 20~30 cm, while IDC showed monthly great changes of 28~71 cm depending on rainfall. Soil moisture content in PDC and IDC was 17.2%, 22.5%, respectively. Air temperature in IDC was lower than $0.3^{\circ}C$, while soil temperature was higher than $0.8^{\circ}C$ compare to PDC, respectively. Main soil color of PDC was grayish olive, while IDC was brownish olive. PDC showed yellowish mottles only at underground of 20~40 cm, while IDC showed that at underground of 30~90 cm. IDC showed lower pH, EC, potassium, calcium and magnesium content, but higher organic matter, phosphate, and iron content than that of PDC, respectively. All of EC, organic matter, potassium, calcium, and magnesium content were decreased, but iron content was increased at the subsoil layers of PDC. All of EC, organic matter, phosphorus, and potassium content were decreased, but calcium and magnesium content were increased at the subsoil layers of IDC. Root yield in IDC was more increased by 33% than that of PDC. The moisture content and rusty ratio of ginseng root in IDC were lower than that of PDC. Ginsenoside content in IDC was higher than that of PDC because the ratio of lateral and fine root showing relatively high content of ginsenoside was higher in IDC than that of PDC.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

A Comparison Study on the Method of Pollution Evaluation of Water Quality in the Stream (하천 수질의 오염도평가 방법의 비교 연구)

  • Lee, Ho-Beom;Lee, Jung-Ki;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.398-403
    • /
    • 2005
  • This study is undertaken to find the optimal method to make the decision on the degree of water pollution by comparison of K-WQI, KOE-WQI that is made for index with the water quality index and water quality environment standard of the Frame Act on Environment Policy as the result of survey for water quality reality on the major point of the Yeongsan river from 2002 to 2004. The water quality of major rivers has some differences depending on seasons. however, under the water quality standard by the $BOD_5$ density, most of rivers displayed the water quality level of $II{\sim}III$ grading, and on K-WQI that is classified by indexing for 10 categories of pH, DO, $BOD_5,\;COD,\;SS,\;T-N,\;NH_3-N,\;NO_{3^-}$ N, T-P, and E-Coli and classified into 5 groups from 100 points to 40 points, they displayed the score distribution of the first grade in water quality for $85{\sim}100$ points to the second grade in water quality for $70{\sim}84$ points. On KOE-WQI that is classified by indexing for 5 categories of pH, DO, $BOD_5$, COD and T-coli and classified into 5 groups from 90 points or above for outstanding and 29 points or below for very bad, and the water quality distribution is made ranged from the first grade in water quality for 90 points or more to the third grade in water quality for $69{\sim}50$ points. In addition, for the contribution of the water quality decline, the Environmental standard has significant dependency on the $BOD_5$ density, with K-WQI contributing in various water quality decline depending on the environment around the river area of $BOD_5,\;T-N,\;NH_3-N,\;NO_3-N,\;T-P$, and E-Coli, and KOE-WQI acting os the factor contributing to lower the water quality decline by $BOD_5$, COD, and T-coli. As such, the current water quality environment standard has high dependency on $BOD_5$ and KOE-WQI excludes some nitrogen and phosphorus that considers the river environment that the grade in water quality is set by some category, and K-WQI reflected well of the ecology environment of rivers with the diversity of the assessment factor as well as to have the low dependency of specific factor to be objective.

Long Tenn Water Quality Prediction using an Eco-hydrodynamic Model in the Asan Bay (생태-유체역학모델을 이용한 아산만 해양수질의 장기 예측)

  • Kwoun, Chul-Hui;Kang, Hoon;Cho, Kwang-Woo;Maeng, Jun-Ho;Jang, Kyu-Sang;Lee, Seung-Yong;Seo, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • The long-term water-quality change of Asan Bay by the influx of polluted disposal water was predicted through a simulation with an Eco-hydrodynamic model. Eco-hydrodynamic model is composed of a multi-level hydrodynamic model to simulate the water flow and an ecosystem model to simulate water quality. The water quality simulation revealed that the COD(Chemical Oxygen Demand), dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) are increased at 5 stations for the subsequent 6 months after the influx of the effluent. COD, DIN and DIP showed gradual decreases in concentration during the period of one to two years after the increase of last 6 months and reached steady state for next three to ten years. Concentration levels of COD, DIN, and DIP showed the increase by the ranges of $11{\sim}67%$, $10{\sim}67%$, and $0.5{\sim}7%$, respectively, which represents that the COD and DIN are the most prevalent pollutants among substances in the effluent through the sewage treatment plant. The current water quality of Asan Bay based on the observed COD, TN and TP concentrations ranks into the class II of the Korean standards for marine water quality but the water quality would deteriorate into class III in case that the disposal water by the sewage plant is discharged into the Bay.

  • PDF

Analysis of the Correlation between Site Environmental Factors and Tree Ring Growth in Chamaecyparis obtusa Stands in Jeonnam Province (전남 편백림에서의 입지환경요인과 연륜생장량의 상관성 분석)

  • Park, Seok-Gon;You, Han-Choon;Oh, Chan-jin;Choi, Woo-Kyong
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.777-784
    • /
    • 2015
  • This study verified the correlations between vegetation factors, such as the number of individual species and species diversity, and soil factors in Chamaecyparis obtusa (CO) stands in Jeollanam-do. Also, the site environmental factors that affect the annual growth of CO ring width were analyzed. Positive correlations were found between the species diversity index and Cation Exchange Capacity (CEC), available phosphate, and exchangeable $K^+$ (P<0.01). In addition, strong positive correlations were also found between the number of species that appeared in the study site and CEC, available phosphorus, exchangeable $K^+$ and exchangeable $Mg^{2+}$ (P<0.01). Tree ring growth showed strong correlations with the nutrient holding capacity and fertility of soil, including available phosphate, exchangeable $K^+$, CEC, and electrical conductivity (P<0.01). The explanatory variables of tree ring growth in CO were composed of exchangeable $K^+$, organic matter content, and soil pH. The regression model had a high level of explanatory power, 74.4%. In this model, the annual growth of CO ring width increased when exchangeable $K^+$ and organic matter content were higher but decreased when soil pH was lower. According to the analysis, it is found that the annual growth of CO ring width was significantly affected by soil fertility, including available phosphate, exchangeable $K^+$, CEC, and electrical conductivity. In addition, the soil fertility of CO stands seems to be significantly affected by the supply of fallen leaves from the understory vegetation of CO.