• Title/Summary/Keyword: Phosphorus and nitrogen loading

Search Result 121, Processing Time 0.022 seconds

Phosphorus and nitrogen loading from the main tributaries into the Nakdong River (낙동강 주요 지천의 인 및 질소부하량에 관한 연구)

  • 허우명;김범철
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.187-196
    • /
    • 1995
  • Phosphorus and nitrogen loadings from the main tributaries into the Nakdong River were estimated by measuring phosphorus and nitrogen concentration in the main tributaries, Nakdong River(Kangjung), Kumho River, Heichun, Hwang River, Nam River, Milyang River, and Yangsanchun from May 1994 to October. Total Phosphorus concenuation of Kumho River was vary high, average 1.0 mgP/1. The other rivers were the range 0.05 ~0.15 mgP/1. Total nitrogen concentration of Kumho River was vary high, average 6.27 mgN/1. The other rivers were the range 1.5~3.0 mgN/l. The phosphorus loading from Kumho River, Nakdong River(Kangjung), Nam River, Milyang River, Hwang River, Yangsanchun, and Heichun were calculated to be 1, 108, 603, 198, 57, 34, 23, and 21 tP/yr, respectively. Therefore, the loading from Kumho River accounted for 45 "yo of total loading, 2, 042 tP/yr, The nitrogen loading from Nakdong River (Kangjung), Kumho River, Nam River, Milyang River, Hwang River, Heichun, and Yangsanchun were calculated to be 12, 636, 7, 411, 2, 611, 1, 523, 779, 608, and 391 tN/yr, respectively. Therefore, the loading from Nakdong River(Kangiung) and Kumho River accounted for 50 % and 30% of total loading, 25, 959 tN/yr, respectively.vely.

  • PDF

A Study on Phosphorus Loading model for Eutrophication Response in the Yongsan Lake (영산호의 부영양화 평가를 위한 인부하모델의 검토)

  • 류일광;이치영
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.97-104
    • /
    • 2000
  • The purpose of this is made an examination of phosphorus loading model for eutrophication response in the Yongsan lake. For the model, we measured the total amount of nutrients derived from the Yongsan river watershed, inflow rate to the Yongsan lake, water quality, and water budget from January to December in 1999. The total amount of precipitation in the Yongsan river watershed was 4,951.7$\times$10$^{6}$ ㎥/y and inflow amount was 2,569.7$\times$10$^{6}$ ㎥/y, therefore the outflow rate of the Yongsan river watershed was 51.9%. The develop loading of total nitrogen was 86,928.1kg/d and that of total phosphorus was 22,007.6kg/d at the Yongsan river watershed, But, as the inflow loading of total nitrogen was 33,962kg/d and the inflow loading of total phosphorus was 2,218kg/d to the Yongsan lake. so each infolw rate was 39.0% and 10.1%. The hydraulic residence time was 34days, total phosphorus loading [L(P)] on the surface area was 23.398g/㎥/y, the hydraulic load( $Q_{s}$) of inflow water was 74.269m/y, the reserve rate of phosphorus in the lake was 0.359, and the settinh velocity of phosphorus was 0.114m/d at the Yongsan lake. Mathematical model of phosphorus loading to estimate the responses of eutrophication at the Yongsan lake is [ $P_{j}$] = 0.838 [L(P)/Q.(1+√ $T_{w}$)$^{-1}$ ] . ] . .

  • PDF

Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process (준혐기-호기 생물막 공정을 이용한 돈사폐수 처리)

  • 임재명;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF

Estimating the Nitrogen and Phosphorus Loads of Wintering Waterfowl Feces in Lake Paldang (팔당호에서 겨울철새 분변에 의한 질소와 인 오염부하량 산정)

  • Lee, Jangho;Park, Hae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.311-316
    • /
    • 2010
  • We estimated the nitrogen and phosphorus loads of wintering waterfowl feces in Lake Paldang. The average number of individual birds that belonged to Anatidae species was 2,852.5 from 2005 to 2008 in Lake Paldang. The number of Anatidae reached 97.4% of the total number of individual birds. For evaluating the loading amounts of N and P by waterfowl to Lake Paldang, the feces dry weight (g/day) of each Anatidae species was estimated by multiplying the body weight of the each bird by 2.25% and assumed that N and P in feces contain 1.46% and 0.33%, respectively. We assigned probability 1/3 to the nutrient decomposition of the bird feces in water. The nitrogen loading by wintering waterfowl feces was 0.06 ton/year and the phosphorus loading was 0.001 ton/year. These amounts were 0.0002% of all N loadings and 0.0001% of all P loadings. Therefore the wintering waterfowl might have little impact on the water quality in terms of eutrophication in Lake Paldang.

The Processing of Livestock Waste Through the Use of Activated Sludge - Treatment with Intermittent Aeration Process -

  • Osada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.698-701
    • /
    • 2000
  • To prevent surface and underground water pollution, wastewater treatment is essential. Four bench-scale activated sludge units (10 L operational volumes) were operated at 5, 10 and $20^{\circ}C$ for evaluation of treatment efficiencies with typical wastewater from swine housing. The units were set for a 24-hour cycle. As compared to the conventional process, high removal efficiencies for organic substances, nitrogen and phosphorus in swine wastewater were obtained simultaneously with an intermittent aeration process (lAP). The NOx-N produced during an aeration period was immediately reduced to nitrogen gas (e.g. $N_2$ or $N_2O$) in the subsequent non-aeration periods, and nitrification in aeration periods occurred smoothly. Under these conditions, phosphorus removal occurred with the release of phosphorus during the non-aeration periods followed by the excess uptake of phosphorus in the activated sludge during aeration periods. It was confirmed that the lAP had a better ability to remove pollutants under both low temperatures and high nitrogen loading conditions than the ordinary method did. In addition to that, the total emission of $N_2O$ from lAP was reduced to approximately 1/50 of the conventional process for the same loading. By adopting an adequate aeration programme for individual swine wastewater treatment, this system will provide a promising means for nitrogen and phosphorus control without pH control or addition of methanol.

A Study on Nitrogen and Phosphorus Concentration in Chung Ju Intake Reservoir (淸州取水源의 窒素 및 燐濃度에 관한 調査硏究)

  • Lee, Yeoung Shin;Lee, Hong Keun
    • Journal of Environmental Health Sciences
    • /
    • v.12 no.2
    • /
    • pp.27-37
    • /
    • 1986
  • This study was carried out to investigate inflow stream of Chungju intake reservoir and in catchment area, run-off loading amount, distribution of Nitrogen and phosphorus, N/P ratio, correlationship between T-N and chlorophyll a, correlationship between T-P and chlorophyll a, and study of trophic state. Field survey was carried out from June to August, 1985, for the purpose of finding out the nitrogen and phosphorus concentration in Chungju intake reservoir.

  • PDF

Annual Runoff Loading of Nitrogen and Phosphorus from a Paddy Field

  • Han, Kang-Wan;Cho, Jae-Young;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.29-33
    • /
    • 1999
  • The present study examined annual runoff loading of nitrogen and phosphorus in the paddy field from 1 May, 1997 to 30 April, 1998. In the investigated area, the amount of rainfall was 1,095.6 mm and 414.6 mm during cropping season and non-cropping season. The annual rainfall was 1,510.2 mm. The total amount of runoff water was 1,043.2 mm and 281.0mm during cropping season and non-cropping season, and the added total amount of runoff water during two seasons was 1,324.2 mm. The runoff loading of nutrients caused by runoff water was measured as follows. The total-N was 149.23 and $8.67kg\;ha^{-1}$ (total amount=$157.90kg^{-1}ha^{-1}yr^{-1}$), the ammonia-N 102.98 and $4.44kg\;ha^{-1}$ ($107.42kg^{-1}ha^{-1}yr^{-1}$), the nitrate-N 28.45 and $1.23kg\;ha^{-1}$ ($29.68kg^{-1}ha^{-1}yr^{-1}$), the total-P 4.16 and $0.38kg\;ha^{-1}$ ($4.54kg^{-1}ha^{-1}yr^{-1}$) during cropping and non-cropping season respectively. When the loss ratio was calculated based on amounts of chemical fertilizer, about 68.6% of nitrogen and 16.7% of phosphorus was lost by runoff from applied fertilizer amount.

  • PDF

Runoff Loading of Nutrients from a Paddy Field during Non-Cropping Season (비영농기간 단일필지 논으로부터 영양물질의 유출량)

  • 조재영;한강완;최진규;구자웅;손재권
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.759-764
    • /
    • 1999
  • In intensive agriculture, exceeded chemical fertilizer application would increase the concentration of nitrate nitrogen in groundwater. Consequently, it could bring the eutrophication in lakes and streams. The present study examined runoff loading of nitrogen and phosphorus from the paddy field during non-cropping season. The runoff loading of total-N, ammonia-N, nitrate-N and total-P were 12.96kg/ha, 5.42kg/ha, 1.52kg/ha and 1.41kg/ha. When the runoff loading of nutrients was compared by runoff water and sediments. About 70-80% of total-N by runoff water and the rest 20-30% by runoff sediments were flowed into streams. But 60-70% of total-P by runoff sediments and the rest 30-40% by runoff water were flowed into streams. The phosphorus compounds, which were flowed into streams by runoff sediments and then sedimented, keep exchanging with water at water body in undelivered condition. And it moves gradually into water layer. This process can cause eutrophication continually and repeatedly in water environment. So, a sound program is needed to reduce soil erosion from farmlands.

  • PDF

Runoff loading of nitrogen and phosphorus with rainfall intensity from a paddy field (논에서 강우크기에 따른 질소와 인산의 유출)

  • Cho, Jae-Young;Han, Kang-Wan;Choi, Chang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.140-147
    • /
    • 1999
  • Since the national land area is small and the fanning land occupies only 24% of total land area in Korea, the promotion of agricultural productivity is urgent. In this process, the application rate of chemical fertilizer, which is the major pollution factor at agricultural non-point sources, has been increasing in every year. The present study examined difference of runoff loading of nitrogen and phosphorus by rainfall intensity(above 100mm, 80-100mm, 50-80mm and 30-50mm). Runoff loading of nitrogen and phosphorus by rainfall intensity has differences under similar rainfall intensity. We are considering that these results were affected by rainfall intensity as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF

Simultaneous Removal of Nitrogen and Phosphorus by Rotating Biological Activated Carbon Process (회전생물활성탄[RBAC] 공정을 이용한 질소.인의 동시 제거)

  • Nam, Beom-Sik;Lee, Yeong-Ho;Jo, Mu-Hwan
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.606-610
    • /
    • 1999
  • The purpose of this study was to develop and evaluate rotating biological activated carbon(RBAC) process for nitrogen and phosphorus removal with increasing loading rate. The removal efficiency of $NH_4^+$-N was observed to be higher than 96.5% at all runs, and the relative stable levels of effluent $NH_4^+$-N, $NO_2^-$-N, $NO_3^-$-N could be maintained. The removal efficiency of T-N was observed to be higher than 90%, except RUN 1. The T-P removal efficiency was kept between 32.7% and 49.8%, and the amount of biomass was kept between 269 mg/g support and 473 mg/g support with varying loading rate.

  • PDF