• Title/Summary/Keyword: Phosphorus Sources

Search Result 228, Processing Time 0.032 seconds

Isolation and Optimization of Cultivating Conditions of Alkalophilic Strains for Biodegradation of Azo Dye (Azo 염료의 분해를 위한 호알카리성 균주의 분리 및 배양조건의 최적화)

  • Kim, Jeong-Mog;Chung, Hyun-Chae;Kwon, Oh-Jin
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.718-723
    • /
    • 1999
  • In order to treat of alkaline dye-processing wastewater, alkalophilic strains biodegrading azo dye, Acid red 1, is isolated from natural system, and optimal culture conditions are examined using response surface analysis, statistical analysis system program. 15 different species which grow in alkaline culture media are isolated from the effluent and river soil discharged from wastewater treatment plant in dye industrial complex. One strain which has the best decolorization efficiency is chosen, and named as AR-1. The result of the examination of carbon, nitrogen and phosphorus sources which have influence on growth and decolorization reveals that optimum carbon, nitrogen and phosphorus sources are 1.0% fructose, 1.0% polypeptone, 1.0% yeast extract and 0.5% $K_2HPO_4$, respectively. In order to optimize of biodegradation conditions of dye by response surface analysis, the characteristics of decolorization and cell growth according to culture temperature and time are monitered. The result shows that the one is optimum 34.77$^{\circ}C$ for 12.97 hours; the other at 34.73$^{\circ}C$ for 12.96 hours. While, optimal conditions of culture that satisfy both cell growth and decolorization are the temperatures from 32.86$^{\circ}C$ to 36.36$^{\circ}C$ and the period of 10.96 to 15.75 hours, respectively.

  • PDF

Optimizing Culture Conditions to Maximize the Production of Laccase from Pholiota highlandensis (Pholiota highlandensis 유래 laccase 생산을 위한 배양조건의 최적화)

  • Choi, Hye-Ju;Moon, Soo-Jung;Jeon, Sung-Jong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.673-679
    • /
    • 2015
  • The culture conditions needed to maximize the production of laccase from Pholiota highlandensis mycelia were investigated. Among the tested media for laccase production, Coriolus versicolor medium (CVM; 2% dextrose, 0.4% peptone, 0.6% yeast extract, 0.046% KH2PO4, 0.1% K2HPO4, 0.05% MgSO4·7H2O) showed the highest activity for the enzyme. Then, to optimize culture conditions for laccase activity, the influences of various carbon, nitrogen, phosphorus, and inorganic salt sources in CVM were investigated. The optimum culture medium was 2% fructose, 0.4% peptone with 0.6% yeast extract, 0.05% NaH2PO4, and 0.05% MgSO4·7H2O as carbon, nitrogen, phosphorus, and inorganic salt sources, respectively. Several aromatic compounds in the medium enhanced laccase activity to varying degrees. Guaiacol induced maximum laccase production, yielding 114.1 U/ml laccase activity after cultivation for 11 days at 25℃. The optimum pH and temperature for laccase production were 8.0 and 35℃, respectively. Native polyacrylamide-gel electrophoresis (PAGE) followed by laccase-activity staining with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate was performed to identify the presence of laccase under the optimum conditions studied. Zymogram analysis of the supernatant culture showed an enzymatic band with a molecular mass of about 90 kDa.

Effects of Source and Application Rate of Phosphorus on Growth and Arbuscular Mycorrhizae Formation of Trifoliate Orange in Volcanic Ash Soil (화산회토양에서 인 공급원과 시용 수준이 탱자유묘의 생육과 공생균근 형성에 미치는 영향)

  • Kang, Seok-Beom;Jwa, Sung-Min;Moon, Doo-Khil;Han, Hae-Ryong;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.206-212
    • /
    • 2000
  • The effects of two phosphorus sources (fused phosphate and rock phosphate), applied at different rates, on growth, arbuscular-mycorrhizae(AM) formation in roots and nutrient contents of trifoliate orange grown in an uncultivated volcanic ash soil were investigated in a greenhouse. The seedlings were either inoculated with AM fungi or left uninnoculated. Growth of seedlings were best in the treatments of 156-272 mg P/kg with fused phosphate. Although the applied P in the rack phosphate treatments were nearly same or much higher comparing to the fused phosphate treatments, seedling growth were significantly less. Soil available P in the treatment of 272 mg P/kg of fused phosphate was maintained in the range of 3-5 mg/kg during the experiment, and the AM formation was about 60% in average. In the treatments of lower rates of fused phosphate application or of rock phosphate application, soil available P were lower than 3 mg P/kg and AM formations were less than 30%. Significant increases were found in seedling growth and nutrient absorption due to AM fungi inoculation, and the effects were much more significant in the treatments of higher AM formation. In most of citrus groves in Cheju island, soil available P is much higher than 200 mg P/kg, and average AM formation in citrus roots is less than 30%. Results obtained in this study show that the formation of AM can be increased at much lower level of available P than the present levels found in citrus groves.

  • PDF

Nutrient production from dairy cattle manure and loading on arable land

  • Won, Seunggun;Shim, Soo-Min;You, Byung-Gu;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods: Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (${\Delta}P=0$). Results: The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion: As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

Changes of the Bacterial Community Structure Depending on Carbon Source in Biological Phosphate Removing Process (생물학적 인 제거 공정에서 탄소원에 따른 미생물군집구조의 변화)

  • Yeo, Sang-Min;Lee, Young-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.165-172
    • /
    • 2006
  • In order to analyze the bacterial community structure including P-removal related organisms, PAOs(polyphosphate accumulating organisms) and GAOs(glycogen-accumulating non-poly-P organisms) occurred in biological phosphate removing process, 2 reactors(SBR; sequencing batch reactor) were operated on different carbon sources(sodium acetate, glucose). For the analysis of bacterial community structure, molecular methods(FISH: fluorescent in situ hybridization and DGGE; denaturing gel gradient electrophoresis) were employed. After 100 days reaction, $PO_4-P$ in effluent dropped to 3.92 mg/L in SBR #1(60.8% removal) fed by sodium acetate, and at the same time FISH results showed that ${\beta}$-subclass proteobacteria(39.67%) and PAOs(45.10%) were dominantly present whereas those value in SBR #2 fed by glucose was 8.30 mg/L(17% removal), and ${\gamma}$-subclass proteobacteria were considerably observed(23.89%) and PAOs was 21.42%. Also the result of DGGE indicated that ${\beta}$-subclass proteobacteria was dominantly observed in SBR #1. However as the temperature increased, the proportion of ${\beta}$-subclass proteobacteria and PAOs decreased, but phosphorus removing inhibitors(GAOs) increased. It suggests that the environmental factor like as temperature and types of carbon source had influence on the prevalence of phosphorus removing organism(PAOs) and phosphorus removing inhibitors(GAOs) in biological phosphate removing process.

Changes of Nitrogen-Fixation Activity and Environmental Factors of Growth in Lespedeza bicolor Turcz (싸리(Lespedeza bicolor Turcz.)의 공생 질소고정활성과 생육환경요인의 변화)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.317-322
    • /
    • 1992
  • The nitrogen fixation activity and environmental factors of Lespedeza bicli!oy Turcz, forming annual root nodules by symbiotic Rhizobium sp. were analyzed in the field conditions during the growing period. Seasunal changes of $N_2-fixation$ activity showed the maximum value of $120\;\mu\textrm{M}\;C_2_H4{\cdot}noduie\;g\;fw^{-1}{\cdot}hr^{-1}$ during the active growing period (June) and varied significantly depending on the growth phase and environmental factors. The maximum activities were attained at the conditions of pH 7, $30^{\circ}C$ of temperature, 18 Kpa of oxygen partial pressure and inhibited by water stress and nitrogen sources. The habitat soil was weak acidic and poor in nitrogen, phosphorus and organic matter contents. The leaf area ratios and chlorophyll contents were ranged from 442 to $48;\textrm{cm}^2{\cdot}g\;dw^{-1}$ and from 33 to $38\;\mu\textrm{g}\;chI{\cdot}\textrm{cm}^2$. Nitrogen contents in each organ showed the maximum of 46, 19 and $11\;mg{\cdot}g\;dw^{-1}, respectively for leaf, rool and stem in the early period. The highest phosphorus contents were 4.2, 1.2 and $0.6\;mg{\cdot}g\;dw^{-1}$, respectively for leaf. root and stem in early growing period. The allocation ratios of nitrogen quantity showed 60% for leaves and 73% for roots during the active and late growth period, and 22% [or stems in average. The allocalion ralios o[ phosphorus quantity showed 58% for leaves during the most productive period, 70% for roots in the pre-growth stage and 26% for stems in average.verage.

  • PDF

Effect of Sewage Sludge Application on Growth of Corn and Chinese Cabbage and Chemical Properties of Soil (하수오니 시용이 옥수수 및 배추 생육과 토양의 화학성 변화에 미치는 영향)

  • Lee, Seung-Heon;Park, Mi-Hyun;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.463-471
    • /
    • 2000
  • A pot experiment was carried out to find out the effects of the sludge application on corn and Chinese cabbage growth and changes in soil chemical properties with sludges collected from 4 plants at 0, 12.5, 25, 50, and $100Mg\;ha^{-1}$ levels and chemical fertilizer. With the corn experiment, the pot where sludge and chemical fertilizers were treated together, greater amount of sludge resulted in initial growth inhibition. In general, higher sludge treatment rates resulted in better growth in the end, whereas initial growth was inhibited due to high the electrical conductivity of saturated extracts(ECe) for the Chinese cabbage. However, the highest yield among sludge treatments was lower than the yield with chemical fertilizers. While the treatments resulted in chemical changes in soil showing differences of cation exchange capacity, organic matter contents, and nitrogen contents, hardly any changes were detected before and after crops were grown. Inorganic nutrients such as Na, K, Ca and Mg showed similar changes. The ECe in soil saturation extract decreased after crops were grown. The more sludge was treated, the greater was the decrease. The differences of ECe in the soil saturation extract with varying degrees of treatment were also reduced after crops were grown. Available phosphorus content increased during growth. Due to the low nitrogen content in sludge, when nitrogen becomes the determining factor for the amount of sludge treatment, phosphorus buildup resulted from continued application of sludge could be raised. Therefore, it is advisable to use phosphorus, not nitrogen content, in determining the amount of sludge treatment and chemical fertilizer as supplementary sources for nitrogen.

  • PDF

Mycelial Culture Conditions of Lepista nuda and Extracellular Enzyme Activity (민자주방망이버섯(Lepista nuda) 균사체 배양조건 및 효소활성)

  • Kim Sang-Dae;Kim Ji-Hye;Kim Jong-Bong;Han Yeong-Hwang
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.164-167
    • /
    • 2005
  • The culture condition and medium composition for the enhanced mycelial growth of Lepista nuda DGUM 26501 were investigated. The optimal temperature and pH for the mycelial growth were $24^{\circ}C$ and $7.0\~8.0$, respectively. The partial pressure of oxygen for the enhanced mycelial growth was more than $10\%\;O_2$. When Czapek-Dox medium was used as a minimal medium, manitol and xylitol were very good carbon sources. Organic nitrogen sources were better than inorganic ones for mycelial growth. As the nitrogen source tested, com steep liquor, soytone and protease peptone were the best as a source of organic nitrogen sources. When ammonium phosphate as phosphorus sources was used, the enhanced mycelial growth was shown. Nicotinic acid was proved to be the most appropriate source of vitamin. After the mycelia of L. nuda DGUM 26501 was cultivated at $24^{\circ}C$ for 10 days in LNM broth (pH 7.0), the activities of extracellular enzyme were determined. The specific activity of $\alpha-amylase$ was much higher than those of other enzymes. However, little or no enzyme activities of $\beta-glucosidase$, CMCase, laccase and lipase were found.

The Estimation of Environmental Capacity in the Southern Coastal Area of Cheju Island using an Ecosystem Model (생태계 모델을 이용한 제주도 남부연안해역의 환경용량 산정)

  • Kim Gwang-Su;Choi Young-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.1
    • /
    • pp.52-61
    • /
    • 2000
  • The field surveys and the seawater analyses were conducted over the southern waters of Cheju island every month from July 1997 to June 1988. The distributions of dissolved inorganic nitrogen(DIN), dissolved inorganic phosphorus(DIP), chemical oxygen demand(COD) and dissolved oxygen(DO) in the southern water area of Cheju island were simulated and reproduced by an ecosystem model. In order to estimate the environmental capacity of the southern coastal area of Cheju island, the simulations for predicting the situation of unfavorable environment in which marine water quality might not be satisfied with Korean standards were performed with an ecosystem model by controlling quantitatively the pollution loads of discharge sources including streams flowing into the sea. The more the loads of 4 major pollution sources flowing into model region increase, the more evident appear the increases of COD, DIN and DIP concentrations around the water areas adjacent to pollution sources. In case the pollution loads of all 4 discharge sources including streams become 3 times as high as the present loads, the concentration of DIN at near-shore waters appears to be increased to about 14.5mmol/m³(=0.20mg/ℓ) which is the third class criterion of Korean standards for marine water quality. In case of 10 times as high as the present loads, COD at near-shore waters appears to be increased to about 1.0mg/ℓ which is the first class criterion of Korean standards. In case of 20 times as high as the present loads, DIP at near-shore waters appears to be increased to about 0.50mmol/m³(=0.015mg/ℓ) which is the second class criterion of Korean standards.

  • PDF

Effect of Nitrogen Source on Growth and Nutrient Content of Panax Ginseng (인삼(人蔘)의 생육(生育)과 양분조성(養分組成)에 대(對)한 질소형태(窒素形態)의 영향(影響))

  • Park, Hoon;Tsho, Kyong-Sik;Choi, Bayung-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.260-265
    • /
    • 1983
  • Growth, content and partition of mineral nutrient of Panax ginseng (3 years old) were investigated with four levels of nitrogen source (ammonium sulfate, urea and calcium nitrate) under sand culture for one year. Growth of top and root was greatest at 50 ppm in all sources. Nitrate showed the greatest root weight and urea did the greatest top weight. Leaf width was large in without-nitrogen plot. The ratio of length to diameter (L/D) of stem was smaller with ammonium than with nitrate. Negative correlation was found between L/D of stem and that of tap root. Nitrogen application increased phosphorus content in leaf and stem but decreased calcium. Partition of P into leaf was smaller in 50 ppm than in without-nitrogen plot in all sources. While that of Mg, Ca and N was greater.

  • PDF