• Title/Summary/Keyword: Phosphorus (P)

Search Result 2,467, Processing Time 0.027 seconds

The effect of phosphorus stress on the energy status and bacteroid content in soybean nodules (인산결핍이 대두근류의 bacteroid 함량과 energy 상태에 미치는 영향)

  • Sa, Tong-Min;Lim, Sun-Uk;Israel, Daniel W.
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.449-456
    • /
    • 1992
  • Expermient were conducted to determine the effect of phosphorus stress on bacteroid content and energy status of soybean (Glycine max [L.] Merr.) nodules. Plants inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed (0.05 mM-P) and control (1 mM-P) treatment in the greenhouse. Phosphorus stress decreased nodule mass per plant and nodule mass to whole plant mass ratio. Phosphorus concentration in leaf, stem and root tissues were reduced by 75% but in nodule tissue was reduced only by 40% under phosphorus stress during 3 week experimental period. The bacteroid content per unit nodule mass and the distribution of total nitrogen and total phosphorus among the bacteroid and plant cell fractions of nodule were not affected significantly by phosphorus stress. Regardless of phosphorus treatment, 22% of the nitrogen and 27% of the phosphorus in whole nodules were associated with the bacteroid fraction. The ATP and total adenylate concentrations in and energy charge of whole nodule were decreased 77%, 46% and 37%, respectively, by phosphorus stress. The ATP concentration in and energy charge of the host plant cell fraction of nodules were decreased 86% and 59%, respectively, but these parametres in bacteroid in nodules were not affected by phosphorus stress. These results indicated that nodule is a strong phosphorus sink and that nodule growth and development are regulated to maintain a high phosphorus and energy content in bacteroid even when the host plant is subjected to phosphorus deficiency.

  • PDF

Bacterial growth and carbon-to-phosphorus consumption in drinking water with different carbon and phosphorus levels (수돗물의 탄소와 인 농도에 따른 세균의 생장과 C/P 소모율)

  • Choi, Sung-Chan;Park, e-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.689-701
    • /
    • 2013
  • Bacterial growth and corresponding consumption of carbon and phosphorus were examined in which tap water samples containing a very low concentration of free chlorine were supplemented with organic carbon and/or phosphorus. The experiments were performed in a fed-batch mode under a controlled temperature of $20^{\circ}C$. In the phosphorus alone-added water, there was no significant increase in bacterial numbers measured as heterotrophic plate count (HPC) in the bulk water. However, bacterial growth was stimulated by the addition of carbon (e.g., bulk HPC levels increased to $10^3CFU/mL$) and further stimulated by the combined addition of carbon and phosphorus (e.g., bulk HPC to $10^5CFU/mL$). The same effects were observed in biofilm HPC and biomass formed on polyethylene (PE) slide surfaces. In the water where organic carbon and phosphorus were added together, the highest biofilm HPC and biomass (measured as extracellular polymeric substance components) densities were observed which were $7.6{\times}10^5CFU/cm^2$ and $5.3{\mu}g/cm^2$, respectively. In addition to the bacterial growth, additions of organic carbon and/or phosphorus resulted in different bacterial carbon-to-phosphorus (C/P) consumption ratios. Compared to a typical bacterial C/P consumption ratio of 100:1, a higher C/P ratio (590:1) occurred in the carbon alone-added water, while a lower ratio (40:1) in phosphorus alone-added water. Comparative value (80:1) of C/P ratio was also observed in the water where organic carbon and phosphorus were added together. At the given experimental conditions, bacterial growth was deemed to be more sensitive to microbially available organic carbon than phosphorus. The effect of phosphorus addition, which resulted in a lower C/P consumption ratio, seemed to be tightly associated with the presence of microbially available organic carbon. These results suggested that the control of extrinsic carbon influx seemed to be more important to minimize bacterial regrowth in drinking water system, since even low content of phosphorus naturally occurring in drinking water was enough to allow a bacterial growth.

Effect of Phosphorus Stress on Photosynthesis and Nitrogen Fixation of Soybean Plant under $CO_2$ Enrichment (대기 $CO_2$ 상승시 인산공급이 식물체의 광합성 및 질소고정에 미치는 영향)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • The objective of this study was to examine the effect of phosphorus deficiency on nitrogen fixation and photosynthesis of nitrogen fixing soybean plant under $CO_2$ enrichment condition. The soybean plants(Glycine max [L.] Merr.) inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed(0.05 mM-P) and control(1 mM-P) treatment under control$(400\;{\mu}l/L\;CO_2)$ and enrichment$(800\;{\mu}l/L\;CO_2)$ enviromental condition in the phytotron equipped with high density lamp$(1000\;{\mu}Em^{-2}S^{-1})$ and $28/22^{\circ}C$ temperature cycle for 35 days after transplanting(DAT). At 35 DAT, phosphorus deficiency decreased total dry mass by 64% in $CO_2$ enrichment condition, and 51% in control $CO_2$ condition. Total leaf area was reduced significantly by phosphorus deficiency in control and enriched $CO_2$ condition but specific leaf weight was increased by P deficiency. Phosphorus deficiency significantly reduced photosynthetic rate(carbon exchange rate) and internal $CO_2$ concentration in leaf in both $CO_2$ treatments, but the degree of stress was more severe under $CO_2$ enrichment condition than under control $CO_2$ environmental condition. In phosphorus sufficient plants, $CO_2$ enrichment increased nodule fresh weight and total nitrogenase activity(acetylene reduction) of nodule by 30% and 41% respectively, but specific nitrogenase activity of nodule and nodule fresh weight was not affected by $CO_2$ enrichment in phosphorus deficient plant at 35 DAT. Total nitrogen concentrations in stem, root and nodule tissue were significantly higher in phosphorus sufficient plant grown under $CO_2$ enrichment, but nitrogen concentration in leaf was reduced by 30% under $CO_2$ enrichment. These results indicate that increasing $CO_2$ concentration does not affect plant growth under phosphorus deficient condition and phosphorus stress might inhibit carbohydrate utilization in whole plant and that $CO_2$ enrichment could not increase nodule formation and functioning under phosphorus deficient conditions and phosphorus has more important roles in nodule growth and functioning under $CO_2$ enrichment environments than under ambient condition.

  • PDF

Distributions and Budgets of Nitrogen and Phosphorus in Hiroshima Bay (Hiroshima만에서의 질소, 인의 분포 및 수지)

  • Kim Do-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.74-89
    • /
    • 1999
  • Distributions and budgets of nitrogen and phosphorus in inner and central areas of Hiroshima bay were investigated for three years from January 1991 to December 1993. The mean loadings of nitrogen and phosphorus Stowed into the entire bay were 870 tonN/month and 129 tonP/month, respectively. About 79 % of nitrogen and 84 % of phosphorus loadings were flowed into the inner area. The TN:TP and DIN:DIP atomic ratios of the discharged freshwater were about 15 and 21, respectively. The PON:POP and DIN:DIP atomic ratios of seawater in the bay varied from 8 to 14 with a mean value of 11, and from 8 to 18 with a mean value of 12, respectively. Estimated fluxes of nitrogen and phosphorus based on the exchange of seawater were 585 tonN/month and 106 tonP/month, respectively, from the inner area to the central area, whereas those fluxes were 62 tonN/month and 107 tonP/month, respectively, from the central area to Akinada. When the remainders of nitrogen and phosphorus substracted outflows from inflows should be sunk, sink fluxes of nitrogen and phosphorus per surface area of the entire bay would be about 9.83 gN/m²ㆍyr and 0.27 gP/m²ㆍyr, respectively. In the central area, the remainders of nitrogen and phosphorus were greater than those in inner area. The residence times of nitrogen and phosphorus were estimated to be about 112 days, respectively, in the entire of Hiroshima Bay.

  • PDF

The Effects of Phosphorus Fertilization After Incorporation of Green Manure Crops to Jeju Volcanic Ash Soils on Potato Yields, Available Phosphate Contents in Soil, and Phosphorus Balances

  • Kang, Ho-Jun;Yang, Sang-Ho;Kim, Yu-Kyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.195-202
    • /
    • 2017
  • The volcanic ash soils from the Jeju province have low available phosphate because of the high phosphate fixing power of the soils. Phosphorus fertilizerwas dressed after cultivating green manure crops and before cultivating potatoes in order to investigate potato yields, the available phosphate contents, and phosphorus balance in the soils. Green manure crops cultivated in this study were hairy vetch alone and hairy vetch and rye. During potato cultivation, four treatments were conducted in the experiments; NF (non fertilizer), P fertilizer ($N-P-K=0-25-0kg\;10a^{-1}$), NK fertilizer ($N-P-K=18-0-19kg\;10a^{-1}$), and NPK fertilizer ($N-P-K=18-25-19kg\;10a^{-1}$). There were no differences in the yields of potato stem and tuber from the cultivation plots of different green manure crops. However, in the plots with single-sown hairy vetch and mixed-sown hairy vetch and rye, the yields of potato stem and tuber were higher in the P fertilizer plot than in NF plot. The yield of tuber among the treatments with mixed-sown hairy vetch and rye was the highest in the NPK fertilizer plot. The available phosphate content in soils initially increased with time in all plots, but began to decrease gradually after Oct. 18. The available phosphate contents were high in the plots for phosphate fertilization, and the difference in available phosphate content between non-phosphorus fertilizer plots and phosphorus fertilizer plots increased with time. In the single-sown hairy vetch and mixed-sown hairy vetch and rye plot, the phosphorus balances in NF plot and NK fertilizer plot were very low, while those in the P fertilizer plot and NPK fertilizer plot were high. In conclusion, available phosphate contents in soil and the potato yields were increased by phosphorus fertilization when potatoes planted after cultivating hairy vetch and rye together, compared to hairy vetch alone.

The Rffect of Sludge Acclimation Conditions and Contact Load on Phosphorus and Organic Substrates Behanio Under Anaerobic Conditions (슬러지 순화조건과 접촉부하가 혐기상태에서 인과 유기물의 거동에 미치는 영향)

  • 박동근
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.427-437
    • /
    • 1994
  • Batch experiments were performed to evaluate the effect of sludge acclimation and contact load on the behavior of phosphorus and organic substrates under anaerobic conditions. Four different sludges were acclimated in the sequencing batch reactors operated by intermittent aeration. All the experiments performed in a bench scale have shown the following results: 1. The unreleaseable phosphorus contents for four different sludges are the range of 16 mg P/g SS to 24 mg P/g SS, depending on the sludge acclimation conditions. 2. All the specific substrate uptake rates(SSUR) are expressed in the first order equation for releaseable phosphorus contents. The reaction rate coefficient k, has the values of 4.0, 8.9, and 13.8 mg COD/mg P/hr, depending on the contact load and slut식e species. 3. As reaction proceeds, the ratios of $\delta$P to -$\delta$COD at high contact load are almost constant in the range of 0.10 to 0.14, but at low contact load, they increase from 0.08 to 0.27.

  • PDF

Isolation and Characterization of Phosphorus Accumulating Acinetobacter CW3 (인 축적균 Acinetobacter CW3의 분리 및 특성)

  • 심성훈;류원률;이영호;김정목;조무환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 1999
  • A highly effective phosphorus accumulating bacterium named Acinetobacter CW3 was isolated from the nature by using Winogradsky columns. The optimal cultivation conditions of Acinetobacter CW3 in shaking flask were determined as $20^{\circ}C$, pH 7, 200rpm, 18.5mg $PO_4$-P/L. Acientobacter CW3 could remove phosphorus completely in 12hours for a batch culture at optimal cultivation condition. This bacterium could uptake phosphorus on aerobic condition and release it on anaerobic condition.

  • PDF

The Removal of Phosphorus by Spent Foundry Sand (폐주물사를 이요한 인제거)

  • 윤철종;진양오;박승조
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.26-30
    • /
    • 1999
  • The removal of phosphorus was investigated from sewage waste water (SWW) using the used foundry sand (UFS). The optimal pH occurred at pH 2 for adsorption of phosphorus species in batch test. Phosphorus could be recovered with 99.9% from SWW in two hours at pH 2 using 100 g of UFS per liler of SWW. The adsorption of phosphorus species on UFS obeyed Langmuir isotherm, whose equation could be expressed by 1= 0.00059/(1+2.49878). Continuous column test for adsorption showed that breakthrough point appeared In 25 hours on the condition of breakthrough concentration of 8 mg/l

  • PDF

The Removal Rates of the Constituents of Litters in the Littoral Grassland Ecosystems in the Lake Paldangho III.Phosphorus (팔당호 연안대 초지생태계에서 낙엽 구성성분의 유실률 III.인)

  • 홍정림;심규철;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.2
    • /
    • pp.159-166
    • /
    • 1996
  • To estimate removal rate of phosphorus in aquatic grassland ecosystems of Paldangho, this investigation was conducted along with the coast of a lake. The experimental results may be summarized on communities of Typha angustata, Miscanthus sacchriflorus Phragmites communis and Scirpus tabernaemontani as follows. The annual production of phosphorus for the litters in T. angustata, M saccharsflorus, P. cam-munis and S. taiernaemontani grasslands were 10.252 g /$m^2$, 3.833 g /$m^2$, , 2.656 g /$m^2$, and 5.210 g /$m^2$, respectively. The ratio of annual production of P accumulated on surface soils in a steady state provides estimates of the removal rate r, The estimated removal rates r of P were 0.58, 0.78, 0.68 and 0.59 in T. angustata, M. sacchariflorus, P. communis and S. tabernaemontani grasslands re- spectively. The removal and accumulation of 50, 95 and of 99% of its steady state level, the estimates for P of T. angustata were 1.195, 5.173 and 8.623 years, in M. sacchariflorus were 0.880, 3.842, and 6.403 years, and in P. cammunis were 1.014, 4.390, and 7.316 years respectively, In S. tabernaemontani grassland required period were 1.178,5.099 and 8.500. Key words:T. angustata, S. tabernaemantani, P. communis, S. tabernaemontani, Paldangho, Removal rate, Phosphorus.

  • PDF

Measurement of Phosphorus in Soil and Water

  • Kim, Hye-Jin;Hwang, Seong-Woo;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.539-544
    • /
    • 2011
  • The relative focus about phosphorus (P) which causes eutrophication characterized by increased growth of undesirable algae has increased in recent years. Phosphorus forms in soil and water include both organic and inorganic forms. There are also a large number of soil P determination methods that have been designed to account for various types of P and mechanisms controlling the chemistry of P in soil, water, and residual materials for environmentally relevant forms of P. However, phosphorus forms in soil, water, and residual materials are also difficult to standardize with any reasonable consensus, due to the number of different disciplines involved. Hence, it is essential to accurately define how P can be measured in soil, water, or residual material samples to avoid potential misinterpretations or inappropriate recommendations in determining amount and types of P. Therefore, we reviewed the testing methods which have appeared in the scientific literature to provide an overview of the soil test P most commonly used.