• Title/Summary/Keyword: Phosphorescence

Search Result 110, Processing Time 0.02 seconds

Optimization of $Nd^{3+}$ ion co-doping in $CaAl_2O_4:\;Eu^{2+}$ blue phosphor ($CaAl_2O_4:Eu^{2+}$ 청색(靑色) 형광체(螢光體)의 $Nd^{3+}$ 도핑 최적화(最適化)에 관한 연구(硏究))

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.46-50
    • /
    • 2007
  • Blue phosphor calcium aluminate, $CaAl_2O_4:Eu^{2+}$ co-doped with $Nd^{3+}$ was prepared by solid state synthesis method. Phosphor materials with 1 mol% $Eu^{2+}$ and varying compositions of $Nd^{3+}$ show high brightness and long persistent luminescence. The synthesized phosphor materials were investigated by powder x-ray diffraction (XRD), SEM, TEM, photoluminescence excitation and emission studies. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}:Nd^{3+}$ was observed in the blue region (${\lambda}_{max}=440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. $Nd^{3+}$ ion doping in the phosphor results in long afterglow phosphorescence when the excitation light is cut off.

Effect of Coordination Environment on the Photophysical Properties of Luminescent Europium(III) Complexes

  • Baek, Nam-Seob;Kim, Yong-Hee;Lee, Dong-Hyun;Seo, Kang-Deuk;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1553-1558
    • /
    • 2009
  • A series of Eu(III) complexes with various neutral ligands (2,2’:6’,2"-terpyridine (T), diglyme (D), 1N-(2-dimethylamino) ethyl)-1N, 2N, 2N-trimethylethane-1,2-diamine (PT), di-(2-picolyl)-amine derivative (HT), and multidentate terpyridine derivative (DT)) were synthesized to investigate the effect of coordination environment on the sensitized luminescence of Eu(III) complexes. The nine coordination sites of the $Eu^{3+}$ ion are occupied by three bidentate carboxylate moieties and one neutral ligand. The highest emission intensity is obtained for $Eu^{3+}$- $[NA]_3$ (PT), due to the difference in energy transfer efficiency and symmetry of the first coordination sphere of $Eu^{3+}$ ion. But, the lowest emission intensity is obtained for $Eu^{3+}$-$[NA]_3$(T). Terpyridine may not play an important role antenna for photosensitizing $Eu^{3+}$ ion. It could be attributed to the weak spectral overlap integral J value between its phosphorescence band and $Eu^{3+}$ion absorption band. Therefore, different coordination environment of $Ln^{3+}$ ion play an important role in providing sensitization of lanthanide ion emission.

Characterization of High Efficient Red Phosphorescent OLEDs Fabricated on Flexible Substrates (연성기판위에 제작된 고효율 Red 인광 OLED의 특성평가)

  • Kim Sung Hyun;Lee Yoo Jin;Byun Ki Nam;Jung Sang Yun;Lee Bum Sung;Yoo Han Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-19
    • /
    • 2005
  • The organic light-emitting devices(OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100$\%$, compared to 25$\%$ in case of the fluorescent material [1]. Thus recently phosphorescent OLEDs have been extensively studied and showed higher internal quantum efficiency than conventional OLEDs. In this study, we have applied a new Ir complex as a red dopant and fabricated a red phosphorescent OLED on a flexible PC(Polycarbonate) substrate. Also, we have investigated the electrical and optical properties of the devices with a structure of A1/LiF/Alq3/(RD05 doped)BAlq/NPB/2-TNAIA/ITO/PC substrate. Our device showed the lightening efficiency of > 30 cd/A at an initial brightness of 1000 cd/$m^{2}$. The CIE(Commission Internationale de L'Eclairage) coordinates for the device were (0.62,0.37) at a current density of 1 mA/$cm^{2}$. In addition, although the sheet resistance of ITO films on PC substrate is higher than that on glass substrate, the flexible OLED showed much better lightening efficiency without much increase in operating voltage.

  • PDF

Novel Cationic 2-Phenylpyridine-based Iridium(III) Complexes Bearing an Ancillary Phosphine Ligand: Synthesis, Photophysics and Crystal Structure

  • Ma, Ai-Feng;Seo, Hoe-Joo;Jin, Sung-Ho;Yoon, Ung-Chan;Hyun, Myeong-Ho;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2754-2758
    • /
    • 2009
  • Three novel phosphorescent 2-phenylpyridine-based iridium(III) complexes, $[(ppy)_2Ir(P\^{}N)]PF6\;(1),\;[(dfppy)_2Ir(P\^{}N)]PF_6$ (2), and $[(dfmppy)_2 Ir(P\^{}N)]PF6$ (3), where $P\^{}N$ = 2-[(diphenylphosphino)methyl]pyridine (dppmp), were synthesized and characterized. The absorption, photoluminescence, cyclic voltammetry and thermal stability of the complexes were investigated. The complexes showed bright blue luminescences at wavelengths of 448 $\sim$ 500 nm at room temperature in $CHCl_3$ and revealed that the $\pi$-acceptor ability of the phosphorous atom in the ancillary dppmp ligand plays an important role in tuning emission color resulting in a blue-shift emission. The single crystal structure of $[(dfmppy))_2Ir(P\^N)]PF_6$ was determined using X-ray crystallography. The iridium metal center adopts a distorted octahedral structure coordinated to two dfmppy and one dppmp ligand, showing cis C-C and trans N-N chelate dispositions. There is a $\pi-\pi$ overlap between π electrons delocalized in the difluorophenyl rings.

Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kim, Dae-Young;Hwang, In-Hye;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2013
  • A series of highly efficient red phosphorescent heteroleptic iridium(III) complexes 1-6 containing two cyclometalating 2-(2,4-substitued phenyl)quinoxaline ligands and one chromophoric ancillary ligand were synthesized: (pqx)$_2Ir$(mprz) (1), (dmpqx)$_2Ir$(mprz) (2), (dfpqx)$_2Ir$(mprz) (3), (pqx)$_2Ir$(prz) (4), (dmpqx)$_2Ir$(prz) (5), (dfpqx)$_2Ir$(prz) (6), where pqx = 2-phenylquinoxaline, dfpqx = 2-(2,4-diflourophenyl)quinoxaline, dmpqx = 2-(2,4-dimethoxyphenyl)quinoxaline, prz = 2-pyrazinecarboxylate and mprz = 5-methyl-2-pyrazinecarboxylate. The absorption, emission, electrochemical and thermal properties of the complexes were evaluated for potential applications to organic light-emitting diodes (OLEDs). The structure of complex 2 was also determined by single-crystal X-ray diffraction analysis. Complex 2 exhibited distorted octahedral geometry around the iridium metal ion, for which 2-(2,4-dimethoxyphenyl)quinoxaline N atoms and C atoms of orthometalated phenyl groups are located at the mutual trans and cis-positions, respectively. The emission spectra of the complexes are governed largely by the nature of the cyclometalating ligand, and the phosphorescent peak wavelengths can be tuned from 588 to 630 nm with high quantum efficiencies of 0.64 to 0.86. Cyclic voltammetry revealed irreversible metal-centered oxidation with potentials in the range of 1.16 to 1.89 V as well as two quasi-reversible reduction waves with potentials ranging from -0.94 to -1.54 V due to the sequential addition of two electrons to the more electron-accepting heterocyclic portion of two distinctive cyclometalated C^N ligands.

Effect of Doping Profile of Blue Activator on the Emission Characteristics of White Organic Light Emitting Diodes (청색 활성제의 첨가 형상 변화에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.486-490
    • /
    • 2011
  • To investigate the effect of two-emission-layer structure on the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs), the PHWOLEDs with two different emission layers, blue EML(29 nm, FIrpic-doped mCP) and red EML(1 nm, Ir(pq)$_2$acac-doped CBP)), following host-guest system were fabricated. The bi-layered blue EML was composed of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 7, 10, 15, 20, and 25 vol.%, respectively). When the concentration of FIrpic was increased from 7 to 15 vol.%, light emission luminance, current efficiency, and external quantum efficiency were increased. On the contrary, when the concentration of FIrpic was increased to more than 20 vol.%, light emission luminance, current efficiency, and external quantum efficiency were decreased. The PHWOLEDs with the bi-layered blue EML structure of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 15 vol.%) showed current efficiency of 29.7 cd/A and external quantum efficiency (EQE) of 16.6% at 1,000 $cd/cm^2$.

Scintillation Characteristics of CsI:X(X=Li+,K+,Rb+ Single Crystals (CsI:X(X=Li+,K+,Rb+단결정의 섬광특성)

  • Gang, Gap-Jung;Doh, Sih-Hong;Lee, Woo-Gyo;Oh, Moon-Young
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • CsI single crystals doped with lithium, potassium or rubidium were grown by using Czochralski method at Ar gas atmosphere. The energy resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 14.5%, 15.9% and 17.0% for $^{137}Cs$(0.662 MeV), respectively. The energy calibration curves of CsI(Li), CsI(K) and CsI(Rb) scintillators were linear for $\gamma$-ray energy. The time resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators measured by CFT(constant-fraction timing method) were 9.0 ns, 14.7 ns and 9.7 ns, respectively. The fluorescence decay times of CsI(Li:0.2 mole%) scintillator had a fast component and slow one of ${\tau}_1=41.2\;ns$ and ${\tau}_2=483\;ns$, respectively. The fluorescence decay times of CsI(K:0.5 mole%) scintillator were ${\tau}_1=47.2\;ns$ and ${\tau}_2=417\;ns$. And the fluorescence decay times of CsI(Rb:1.5 mole%) scintillator were ${\tau}_1=41.3\;ns$ and ${\tau}_2=553\;ns$. The phosphorescence decay times of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 0.51 s, 0.57 s and 0.56 s, respectively.

Characteristics and thermal stability of SrAl2O4: Eu2+, Dy3+ long afterglow phosphors synthesized solid state reaction and polymerized complex method (고상반응법과 착체중합법으로 합성된 SrAl2O4: Eu2+, Dy3+ 축광성 형광체의 특성 및 열적 안정성 평가)

  • Kim, Tae-Ho;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.193-200
    • /
    • 2016
  • Characteristics of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphorescent phosphors synthesized by solid state reaction and polymerized complex method were comparatively analyzed. In order to evaluate thermal stability of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphorescent phosphors at high temperature, phosphorescent properties of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ were investigated with thermal treatment at $1250^{\circ}C$ under reducing atmosphere, which was the general heat treatment conditions for ceramic manufacturing process. The phosphorescent properties of thermally treated $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphors synthesized by solid state reaction and polymerized complex method were investigated. The crystal structure and crystallite size were observed through XRD analysis. Microstructure and particle size of thermally treated $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphors were analyzed by SEM and PSA. Photoluminescence and afterglow characteristics of thermally treated $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ phosphorescent phosphors were measured by spectrofluorometer.

Scintillation Characteristics of CsI(Li) Single Crystals (CsI(Li) 단결정의 섬광특성)

  • Lee, W.G.;Doh, S.H.;Ro, T.I.;Kim, W.;Kang, H.D.;Moon, B.S.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.359-367
    • /
    • 1999
  • CsI(Li) single crystals doped with 0.02, 0.1, 0.2 and 0.3 mole% lithium as an activator were grown by Czochralski method. The lattice structure of grown CsI(Li) single crystal was bcc, its lattice constant was $4.568\;{\AA}$. The absorption edge of CsI(Li) single crystal was 245 nm, and the spectral range of luminescence was $300{\sim}600\;nm$, its maximum luminescence intensity appeared at 425 nm. The energy resolutions of CsI(Li) single crystal doped with 0.2 mole% lithium were 14.5% for $^{137}Cs$(662 keV), 11.4% for $^{54}Mn$(835 keV) and 17.7% and 7.9% for $^{22}Na$(511 keV and 1275 keV), respectively. The relation formula of $\gamma$-ray energy versus energy resolution was ln (FWHM%) = -0.893lnE + 8.456 and energy calibration formula was ${\log}E_r=1.455\;{\log}(ch.)-1.277$. The phosphorescence decay time of CsI(Li) crystal doped with 0.2 mole% lithium was 0.51 s at room temperature, and its time resolution measured by CFT(constant-fraction timing method) was 9.0 ns.

  • PDF

Light Scattering-enhanced Upconversion Efficiency in Silica Microparticles-embedded Polymeric Thin Film (고분자 박막 내에 담지 된 실리카 마이크로입자의 광산란 효과에 의한 광에너지 상향전환 효율 향상)

  • Choe, Hyun-Seok;Lee, Hak-Lae;Lee, Myung-Soo;Park, Jeong-Min;Kim, Jae-Hyuk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.88-94
    • /
    • 2019
  • Triplet-triplet annihilation upconversion (TTA-UC) is a photochemical process wherein two or more low-energy photons are converted to a high-energy photon through a special energy transfer mechanism. Herein, we report a strategy to enhance the efficiency of TTA-UC through the light-scattering effect induced by silica microparticles (SM) embedded in polymeric thin films. By incorporating monodisperse uniform silica microparticles with a uniform size of 950 nm synthesized by $St{\ddot{o}}ber$-based seeded growth method into UC polymeric thin films, the UC intensity in the 430-570 nm range was enhanced by as much as 64% when irradiated by 635 nm laser. Analyzing the lifetime of PdTPBP phosphorescence revealed that the presence of SM in the UC layer does not affect triplet-triplet energy transfer (TTET) between sensitizers and acceptors, supporting the enhancement of TTA-UC originated from the light-scattering effect. On the other hand, the incorporation of SM in UC layer is shown to enhance the triplet-triplet annihilation (TTA) efficiency, which results in a 1.5-fold increase of the ${\Phi}_{UC}$, by scattering light source and thus increasing the number of excited photons to be utilized in TTA-UC process.