• Title/Summary/Keyword: Phospholipase A

Search Result 538, Processing Time 0.034 seconds

Catalytic Properties of Phospholipase D using Phosphatidic Acid as an Activator

  • Eun-hie Koh;Myung-Un Chol;Kwanyoung Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.595-599
    • /
    • 1989
  • The effects of phosphatidic acid(PA) on the activity of phospholipase D were examined in detail. The enzyme activity was examined in the liposome system containing phosphatidylcholine and PA, which was suspended in a desired buffer solution by ultrasonication. The substrate of large unilamella vesicle (LUV) state by ultrasonication was more effective on the enzyme activity than that of multilamella vesicle(MLV) by water-bath type sonication. The most effective molar ratio of PC-PA liposome for enzyme activity was found to be 1:0.7. The other optimum conditions were found 5 mM $Ca^{2+}$ ion, pH 6.6, and incubation temperature of $27^{\circ}C. K_m \;and \;V_{max}$ values were estimated to be 1.43 mM and 0.8 $nmole/min/{\mu}g$ protein respectively. These properties in a PC-PA liposome system were compared with those in a PC-SDS mixed micelle system. The effects of other phospholipids and organic phosphates on the enzyme activity were also examined.

Enzymatic degumming of edible fats and oils (효소를 이용한 식용유지의 탈검 공정)

  • Yoon, Suk Hoo
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.100-113
    • /
    • 2018
  • To obtain an edible grade oil from crude oil extracted from oil-bearing materials, it is generally necessary to carry out a refining process composed with degumming, deacidification, bleaching, and deodorization, to remove undesirable matters which affect the quality and shelf life of oils. The main purpose of degumming is to remove gum material mainly consisted with phospholipids. Phospholipases convert nonhydratable phospholipids into their hydratable forms which can be removed by centrifugation. In comparison with conventional water and acid degumming processes, enzymatic degumming can result the lower phosphatide content in oil than conventional processes. The enzymatic degumming can be conducted with the reduced amount of acid, and contributes to generate less amount of wastewater, decrease of operating cost, and increase oil recovery yield. The phospholipases used in enzymatic degumming process are phospholipase A1, A2, B, and C.

Engineering of a Microbial Cell Factory for the Extracellular Production of Catalytically Active Phospholipase A2 of Streptomyces violaceoruber

  • Lee, Hyun-Jae;Cho, Ara;Hwang, Yeji;Park, Jin-Byung;Kim, Sun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1244-1251
    • /
    • 2020
  • Phospholipase A2 (PLA2) from Streptomyces violaceoruber is a lipolytic enzyme used in a wide range of industrial applications including production of lysolecithins and enzymatic degumming of edible oils. We have therefore investigated expression and secretion of PLA2 in two workhorse microbes, Pichia pastoris and Escherichia coli. The PLA2 was produced to an activity of 0.517 ± 0.012 U/ml in the culture broth of the recombinant P. pastoris. On the other hand, recombinant E. coli BL21 star (DE3), overexpressing the authentic PLA2 (P-PLA2), showed activity of 17.0 ± 1.3 U/ml in the intracellular fraction and 21.7 ± 0.7 U/ml in the culture broth. The extracellular PLA2 activity obtained with the recombinant E. coli system was 3.2-fold higher than the corresponding value reached in a previous study, which employed recombinant E. coli BL21 (DE3) overexpressing codon-optimized PLA2. Finally, we observed that the extracellular PLA2 from the recombinant E. coli P-PLA2 culture was able to hydrolyze 31.1 g/l of crude soybean lecithin, an industrial substrate, to a conversion yield of approximately 95%. The newly developed E. coli-based PLA2 expression system led to extracellular production of PLA2 to a productivity of 678 U/l·h, corresponding to 157-fold higher than that obtained with the P. pastoris-based system. This study will contribute to the extracellular production of a catalytically active PLA2.

Enhancement of a Liver Form of Cytosolic Phospholipase $A_2$ Activity by Methylmercury

  • Huh, Don-Haeng;Kang, Mi-Sun;Sohn, Dong-Hun;Na, Doe-Sun;Kim, Dae-Kyong
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.189-195
    • /
    • 1998
  • Methylmercury (MeHg), which is widely distributed in the environment, is well known for both its acute and chronic poisoning effects on the human health; however, the precise biochemical mechanisms by which this compound elicits its toxicity in a cellular level are still poorly understood. To examine whether MeHg-induced liver injury involves activation of Phospholipase $A_2$ ($PLA_2$), the $PLA_2$ activity of control and MeHg-administrated livers was measured. MeHg stably enhanced a liver form of cytosolic $PLA_2$ activity, which exhibited several biochemical properties similar to those of the 100 kDa $cPLA_2$, except in its elution profile of a DEAE-5PW HPLC, and it migrated as a molecular weight of 80 kDa in Western blot analysis. This blotting analysis also indicated that the MeHg-induced enhancement of the activity could be due to the increase in the amount of the enzyme protein rather than a stable modification of the enzyme such as phosphorylation. Our data also showed the higher myeloperoxidase activity in MeHg-administrated liver than in the control, suggesting that this increase in the amounts of the 80 kDa $PLA_2$ and its activity may be resulted from infiltration of neutrophils into the liver during a hepatic injury process such as MeHg-induced inflammation. Taken together, these data suggest that MeHg-induced liver injury may be mediated by activation of the 80 kDa form of liver cytosolic $PLA_2$.

  • PDF

Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.236-241
    • /
    • 2019
  • Background: Thromboxane A2 ($TXA_2$) induces platelet aggregation and promotes thrombus formation. Although ginsenoside Ro (G-Ro) from Panax ginseng is known to exhibit a $Ca^{2+}-antagonistic$ antiplatelet effect, whether it inhibits $Ca^{2+}-dependent$ cytosolic phospholipase $A_2$ ($cPLA_{2{\alpha}}$) activity to prevent the release of arachidonic acid (AA), a $TXA_2$ precursor, is unknown. In this study, we attempted to identify the mechanism underlying G-Ro-mediated $TXA_2$ inhibition. Methods: We investigated whether G-Ro attenuates $TXA_2$ production and its associated molecules, such as cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS), $cPLA_{2{\alpha}}$, mitogen-activated protein kinases, and AA. To assay COX-1 and TXAS, we used microsomal fraction of platelets. Results: G-Ro reduced $TXA_2$ production by inhibiting AA release. It acted by decreasing the phosphorylation of $cPLA_{2{\alpha}}$, p38-mitogen-activated protein kinase, and c-Jun N-terminal kinase1, rather than by inhibiting COX-1 and TXAS in thrombin-activated human platelets. Conclusion: G-Ro inhibits AA release to attenuate $TXA_2$ production, which may counteract $TXA_2-associated$ thrombosis.

The Effects of Bee Venom on PLA2, COX-2, iNOS, AA and PG in RAW 264.7 Cells (봉약침액(蜂藥鍼液)이 PLA2, COX-2, iNOS, AA 및 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Ha, Seang-Jong;Lee, Seong-No;Jo, Hyun-Chul;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.5 no.2
    • /
    • pp.40-51
    • /
    • 2002
  • Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide-induced expression phospholipase $A_2$, cyclooxygenase-2 and inducible nitrogen oxide synthase, and the generation of arachidonic acid, prostaglandin D2 and E2 in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase $A_2$, cyclooxygenase and inducible nitrogen oxide synthase was determined by western blotting with corresponding antibodies, and the generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ was assayed by ELISA method in RAW 264.7 cells. The non-toxic concentrations (0.1 to $5\;{\mu}g/ml$) of bee venom determined by MTT assay, were used in this study. Results : 1. Bee venom inhibited lipopolysaccharide-induced expression of phospholipase $A_2$ in a dose dependent manner after 48 hours treatment. 2. Bee venom inhibited lipopolysaccharide-induced expression of cyclooxygenase-2 in a dose dependent manner after 24 and 48 hours treatment. 3. Bee venom inhibited lipopolysaccharide-induced expression of inducible nitrogen oxidesynthase in a dose dependent manner after 48 hours treatment. 4. The generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ was not much affected by the treatment of bee venom on the lipopolysaccharide-induced generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ in RAW 264.7 cells.

Expression of Phospholipase A2 Receptor in Pediatric Hepatitis B Virus-Related Membranous Nephropathy

  • Choi, Sung-Eun;Bae, Yoon Sung;Lee, Keum Hwa;Shin, Jae Il;Jeong, Hyeon Joo;Lim, Beom Jin
    • Childhood Kidney Diseases
    • /
    • v.24 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Purpose: Hepatitis B virus (HBV) infection is among etiologies of secondary membranous nephropathy (MN) in pediatric patients. We evaluated expression of phospholipase A2 receptor (PLA2R), a specific target antigen of primary MN, in pediatric HBV-related MN. Methods: We retrospectively reviewed patients with biopsy-proven HBV-related MN from the renal biopsy registry and electronic medical records of Severance Hospital, Seoul, Korea, from 1993 to 2004. Paraffin-embedded human kidney tissues were retrieved and immunohistochemically stained for PLA2R. Results: Ten pediatric patients with 13 biopsied specimens were reviewed. The predominant pathological stage was stage II-III, and second was stage II. The intensity of staining for IgG was greatest, with less intense staining for IgM, IgA, C3, C4, and C1q. All the patients had angiotensin-converting enzyme inhibitor combined with glucocorticoid, and four patients converted to cyclosporine treatment from glucocorticoid monotherapy. Urinalysis of all the patients normalized after variable period. PLA2R staining was demonstrated in the outer glomerulus in 3 out of 13 biopsies, 2 of which were obtained from the same patient over a 5-year interval. Conclusions: PLA2R was expressed in a small number of cases diagnosed as pediatric HBV-related MN, indicating that some HBV-related MN cases may be primary MN concurrent with HBV infection.

Inhibitory Action of Phenylpropanoids on Phospholipase A2 and Phosphodiesterase in Athmatic Guinea Pig Lung

  • Kim, Youn-Joung;Lee, Ji-Yun;Lee, Jin-Hee;Kim, Tae-Doo;Sim, Sang-Soo;Kim, Chang-Jong
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.193.2-194
    • /
    • 2003
  • Effect of phenylpropanoids on Phospholipase A2 (PLA2) and phosphodiesterase (PDE) activities in the asthmatic lung tissue were studied in guinea pigs. Bronchial asthma were introduced by the challenge of aerosolized ovalbumin (OA) in the double-chambered plethysmograph at twenty one days after sensitization of OA in guinea pigs. Bronchoalveolar lavage fluids (BALF) were taken by brochalveolar lavage with HEPES buffer. (omitted)

  • PDF