• 제목/요약/키워드: Phospholipase $C-{\gamma}\

검색결과 78건 처리시간 0.025초

곰팡이 분리주 MT60109가 생산하는 Phospholipase C 저해물질의 분리

  • 오원근;이현선;박찬선;안순철;고학룡;민태익;안종석
    • 한국미생물·생명공학회지
    • /
    • 제25권6호
    • /
    • pp.592-597
    • /
    • 1997
  • During the screening of inhibitors against phospholipase C (PLC) and the formation of inositol phosphates (IP$_{t}$) at NIH3T3${\gamma}$1 cells from microbial secondary metabolites, we selected a fungal strain MT60109 which was capable of producing an inhibitor. By the taxonomic studies, this fungus was identified as Pseudallescheria sp. MT60109 and an inhibitor of PLC was purified by BuOH extraction and chromatographic techniques from the culture broth of Pseudallescheria sp. MT60109. The inhibitor was identified as thielavin B by the physico-chemical properties and spectroscopic analysis of UV, FAB-MS, $^{1}$H, $^{13}$C-NMR, $^{1}$H-$^{1}$H COSY and HMBC. Thielavin B showed potent inhibitory activity against PLC purified from bovine brain with an IC$_{50}$ of 20 $\mu$M. And it also inhibited the formation of inositol phosphates in platelet-derived growth factor (PDGF) -stimulated NIH3T3${\gamma}$1 cells with an IC$_{50}$ of 20 $\mu$M.

  • PDF

Identification of Phosphatidylcholine-Phospholipase D and Activation Mechanisms in Rabbit Kidney Proximal Tubule Cells

  • Chung, Jin-Ho;Chae, Joo-Byung;Chung, Sung-Hyun
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.11-16
    • /
    • 1996
  • The present study showed that receptor-mediated activation of rabbit kidney proximal tubule cells by angiotensin II, the $Ca^{2+}$ ionophore A23187, or the protein kinase C activator phorbol myristate acetate (PMA) all stimulated phospholipase D (PLD). This was demonstrated by the increased formation of phosphatidic acid, and in the presence of 0.5% ethanol, phosphatidylethanol (PEt) accumulation. Angiotensin II leads to a rapid increase in phosphatidic acid and diacylglycerol, and phosphatidic acid formation preceeded the formation of diacylglycerol. This result suggests that some phosphatidic acid seems to be formed directly from phosphatidylcholine hydrolyzed by Pill. On the other hand, EGTA substantially attenuated angiotensin II and A23187-induced PEt formation, and when the cells were pretreated with verapamil angiotensin II-induced Pill activation was completely abolished. These results provide the evidence that calcium ion influx is essential for the agonist-induced Pill activation. In addition, staurosporine, an inhibitor of protein kinase C, strongly inhibited PMA-induced PEt formation, but was ineffective on angiotensin II-induced PEt accumulation. $GTP{\gamma}S$ also stimulates PEt formation in digitonin-permeabilized cells, but pretreatment of the cells with pertussis toxin failed to suppress angiotensin II-induced PEt formation. From these results, we conclude that in the rabbit kidney proximal tubule cells the mechanisms of angiotensin II- and PMA-induced Pill activation are different from each other and mediated via a pertussis toxin-insensitive trimeric G protein.

  • PDF

방선균 분리주가 생산하는 Phospholipase C 저해물질인 MT-2617-2B의 분리 및 특성 (Isolation and Characterization of MT2617-2B, a Phospholipase C Inhibitor Produced by an Actinomycetes Isolate)

  • 고학룡;이현선;오원근;안순철;김보연;강대욱;민태익;안종석
    • 한국미생물·생명공학회지
    • /
    • 제24권1호
    • /
    • pp.19-26
    • /
    • 1996
  • A phospholipase C (PLC) inhibitor (MT267-2B) was isolated from the culture broth of actinomycetes isolate MT2617-2 by the extraction with n-butanol and column chromatographic techniques. The molecular weight of the inhibitor was 1057, by the spectroscopic analyses of IR, $^{13}C$-and $^{1}H$-NMR and ESI-MS. The chemical structure of MT2617-2B was found to be a macrolide compound consisted of a hemiketal ring, polyhydroxyl and polymethyl groups, which had a malonate and guanidine group as its side chain. MT2617-2B produced its two isomers having the same molecular weight by standing in methanol solution at room temperature. Therefore, MT2617-2B was identified as copiamycin and niphithricin A, macrolide antibiotics. The values of $IC_{50}$ against PLC-${\gamma}$1 and PLC-${\beta}$1 were 25 and 50${\mu}$g/ml, respectively. MT2617-2B had antimicrobial activities against Staphylococcus aureus and Candida albicans, but not against Escherichia coli.

  • PDF

Point Mutations in the Split PLC-γ1 PH Domain Modulate Phosphoinositide Binding

  • Kim, Sung-Kuk;Wee, Sung-Mo;Chang, Jong-Soo;Kwon, Taeg-Kyu;Min, Do-Sik;Lee, Young-Han;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.720-725
    • /
    • 2004
  • A number of signaling molecules contain small pleckstrin homology (PH) domains capable of binding phosphoinositides or proteins. Phospholipase C (PLC)-${\gamma}1$ has two putative PH domains, an $NH_2$-terminal (PH1) and a split PH domain ($nPH_2$ and $cPH_2$). We previously reported that the split PH domain of PLC-${\gamma}1$ binds to phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)$P_2$) (Chang et al., 2002). To identify the amino acid residues responsible for binding with PI(4)P and PI(4,5)$P_2$, we used site-directed mutagenesis to replace each amino acid in the variable loop-1 (VL-1) region of the PLC-${\gamma}1$ $nPH_2$ domain with alanine (a neutral amino acid). The phosphoinositide-binding affinity of these mutant molecules was analyzed by Dot-blot assay followed by ECL detection. We found that two PLC-${\gamma}1$ nPH2 domain mutants, P500A and H503A, showed reduced affinities for phosphoinositide binding. Furthermore, these mutant PLC-${\gamma}1$ molecules showed reduced PI(4,5)$P_2$ hydrolysis. Using green fluorescent protein (GFP) fusion protein system, we showed that both $PH_1$ and $nPH_2$ domains are responsible for membrane-targeted translocation of PLC-${\gamma}1$ upon serum stimulation. Together, our data reveal that the amino acid residues $Pro^{500}$ and $His^{503}$ are critical for binding of PLC-${\gamma}1$ to one of its substrates, PI(4,5)$P_2$ in the membrane.

The SH3 Domain of Phospholipase C-${\gamma}1$ Associates with Shc

  • Kim, Myung-Jong;Hwang, Jong-Ik;Chang, Jong-Soo;Ryu, Sung-Ho;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.119-126
    • /
    • 1999
  • The SH3 domain of PLC-${\gamma}1$ has been known to induce DNA synthesis. However, little is known about the putative effector proteins that associate with the domain. In this report, we provide evidence that the SH3 domain of PLC-${\gamma}1$ associates with Shc, which has been implicated in the activation of p21Ras in response to many growth factors. The association between Shc and PLC-${\gamma}1$ is enhanced either by v-Src-induced transformation or EGF-stimulation in vivo and in vitro. Furthermore, from transient expression studies with COS-7 cells, we show that the SH3 domain of PLC-${\gamma}1$ is required for association with Shc in vivo, whereas tyrosyl phosphorylation of PLC-${\gamma}1$ is not. Taken together, we suggest that Shc might be involved in the PLC-${\gamma}1$-mediated signaling pathway.

  • PDF

체강 삼출액의 진단에 있어서 $PLC-{\gamma}1$ 면역 염색의 유용성 ([ $PLC-{\gamma}1$ ] for Differentiating Adenocarcinoma from Reactive Mesothelial Cells in Effusions)

  • 우영주;김성숙
    • 대한세포병리학회지
    • /
    • 제8권2호
    • /
    • pp.115-119
    • /
    • 1997
  • Cytologic diagnosis of reactive or malignant effusion is sometimes difficult. Especially, differentiation of benign reactive mesothelial cells from malignant cells in body effusion is more difficult. Recently, immunohistochemistry has been used to diagnose difficult cases. Phospholipase $C(PLC)-{\gamma}1$ is one of the isoenzyme of the PLC which plays central role in signal transduction involving cellular growth, differentiation and transformation by phosphorylating many protein component. Increased expression of $PLC-{\gamma}1$ in human breast carcinoma, colorectal carcinoma and stomach cancers are reported. To evaluate the efficacy of positive $PLC-{\gamma}1$ immunostaining in the diagnosis of malignancy in effusions, paraffin-embedded cell blocks of pleural fluid and ascites from 10 patients(5 metastatic adenocarcinomas, and 5 reactive mesothelial cells) were immunostained with a monoclonal antibody to $PLC-{\gamma}1$. $PLC-{\gamma}1$ immuostained all the adenocarcinomas in cell block(5/5) with intense membrane pattern, however, none of the reactive mesothelial proliferations stained with the diagnostic membrane pattern. Thus, our study strongly supports the conclusion that $PLC-{\gamma}1$ immunopositivity is likely to become a useful adjunct for the diagnosis of malignancy in effusions.

  • PDF

Multiple roles of phosphoinositide-specific phospholipase C isozymes

  • Suh, Pann-Ghill;Park, Jae-Il;Manzoli, Lucia;Cocco, Lucio;Peak, Joanna C.;Katan, Matilda;Fukami, Kiyoko;Kataoka, Tohru;Yun, Sang-Uk;Ryu, Sung-Ho
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.415-434
    • /
    • 2008
  • Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-$\beta$, -$\gamma$, -$\delta$, -$\varepsilon$, -$\zeta$ and -$\eta$. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

소의 뇌조직 Phospholipase C의 활성화에 미치는 G-단백질의 역할 (The Role of G protein in the Activation of Phospholipase C from Bovine Brain)

  • 김정희;이동진;변영주
    • Journal of Yeungnam Medical Science
    • /
    • 제9권2호
    • /
    • pp.288-301
    • /
    • 1992
  • 소의 중추신경계의 신경전달인자에 의한 세포막에서의 정보전달 과정에 관여하는 PLC 활성화에 G-단백질의 관여 여부를 관찰하기 위하여 소의 뇌조직의 PLC ${\beta}$, ${\gamma}$${\delta}$를 얻어 각 isozyme의 특성을 관찰하였다. 기질용액에 phosphatidyl choline(PC)을 첨가시 PLC 각 isozyme 마다 정도의 차이는 있으나 증가 양상을 보였으며 PLC ${\delta}$$100{\mu}M$ $Ca^{2+}$ 농도에서 높은 활성도 증가를 보였다. 세포막 소포체를 형성하기 위하여 $PIP_2$기질과 PC에 detergent로 cholate와 deoxycholate 농도에 따른 PLC 효과 관찰에서 cholate 농도 0.2%에서 1%까지 증가할 때 효소 활성도의 지속적인 상승이 관찰되었고, deoxycholate는 농도가 0.2%에서 높았다가 0.4%에서 낮아졌고 1%까지 증가함에 따라 PLC 효소 활성도는 약간 증가하였다. 기질액에 뇌추출액을 첨가하여 cholic acid 농도에 따른 PLC의 효과를 관찰한 결과 cholic acid 농도 0.2%에서 보다 1%에서 각 isozyme 모두에서 PLC활성도가 증가하였다. 소의 여러 장기에서 PLC isozyme의 분포정도를 방사면역측정방법으로 관찰하였을 때 뇌조직에 가장 많이 분포하고 있으며 특히 PLC ${\beta}$, ${\gamma}$가 많았고, PLC ${\delta}$는 부신에서 가장 많이 분포하였다. 다음으로 PLC ${\beta}$는 부신과 위, PLC${\gamma}$는 부신과 폐순이었다. PLC 효소가 활성화될 때 G-단백질의 관여 여부에 관하여 cholate 0.2%와 0.1%에서 G-단백질과 GTPrS 및 PLC의 결합정도의 관찰은 조직분쇄시료를 소의 뇌 및 부신조직을 이용하여 $^{35}S$-GTPrS 첨가시와 단세포군 항체를 이용한 경우 모두에서 1.49% 이하의 낮은 결합 정도를 관찰하였다. 그래서 정제된 PLC isozyme과 G-단백질 $Go{\alpha}$, $G{\beta}{\gamma}$, Gmix, $Gi{\alpha}$$Gt{\alpha}$ 각각에 대한 효과 관찰에 서 $Go{\alpha}$$G{\beta}{\gamma}$는 PLC ${\beta}$${\delta}$의 활성도를 증가시켰고, PLC ${\gamma}$는 별 영향이 없었으며 Gmix에서는 세효소 모두 증가시켰다. $Gi{\alpha}$는 PLC ${\beta}$${\gamma}$에서만 증가하였다. $Gt{\alpha}$는 PLC ${\beta}$${\gamma}$에서 억제하였고 PLC ${\delta}$에서는 증가 양상을 보였다. 그러므로 PLC 활성화에 G-단백질의 관여가 인지되며 PLC isozyme과 G-단백질의 종류에 따라 대개의 경우 증가하는 경향이나 일부는 억제 내지는 별 영향이 없는 것으로 나타났다.

  • PDF

SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway

  • Li, Tingting;Li, Wei;Lu, Jingyu;Liu, Hong;Li, Yinghui;Zhao, Yanyan
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.516-522
    • /
    • 2009
  • SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor $\alpha$ (ER$\alpha$), and prevent the recruitment of phospholipase C-$\gamma$ (PLC-$\gamma$) to ER$\alpha$. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ER$\alpha$/PLC-$\gamma$/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

Development of screening systems for modulators on phospholipase-mediated signal transduction

  • Lee, Young-Han-;Min, Do-Sik;Kim, Jae-Ho-;Suh, Pann-Ghill;Ryu, Sung-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.186-186
    • /
    • 1994
  • Many agonists have been known to activate the hydrolysis of membrane phospholipids through the bindings with corresponding receptors on the various cells. Diacylglycerol and inositol 1,4,5-trisphosphate(IP3) generated by the action of phosphoinositide-specific phospholipase C (PI-PLC) are well known second messengers for the activation of protein kinase C and the mobilization of Ca2+ in many cells. Three types of PI-PLC isozyme (${\alpha}$,${\gamma}$, and $\delta$) and several subtrpes for each type have been identified from mammalian sources by purification of enzymes and cloning of their cDNAs. Each type PI-PLC isozyme is coupled to different receptors and mediators, for example, ${\beta}$-types are coupled to the seven-transmembrane-receptors via Gq family of G-proteins and ${\beta}$-types directly to the receptor tyrosine kinases. Specific modulators for the signaling pathway through each type of PI-PLC should be very useful as potential potential candidates for lend substances in developing novel drugs. To establish the sensitive and convenient screening systems for searching modulators on PI-PLC mediated signaling, two kinds of approaches have been tried. (1) Establishment of in vitro assay condition for each type of PI-PLC isozyme: Overexpression by using vaccinia virus and purification of each isozyme was carried out for the preparation of large amounts of enaymes. Optimum and sensitive assay condition for the measurements of PI-ELC activities were established. (2) Development of the cell lines in which each type of PI-PLC is permanently overexpressed: A fibroblast cell line (3T3${\gamma}$1-7) in which PI-PLC-${\gamma}$1 was overexpressed by using pZip-neo expression vector was developed and used for the measurement of PDGF-induced IP3 formation. The responses for IP3 formed in 3T3${\gamma}$1-7 cells by the treatment of PDGF is 8 times more sensitive than those in control cells. 3T3${\gamma}$l-7 cell is useful for the screening of the inhibitors on the PDGF-induced cellular responses from large number of samples in a small volume(50 ${\mu}$l) and short time(5-15 min). Using these systems, we screened hundreds of herb-extracts for the inhibition of PDGF-induced IP3 formation and selected several extracts that showed the inhibition as the candidates for isolation and characterization of active substances. The determination of the acting point of selected extracts or fractions in the PDGF signaling pathway has been analyzing.

  • PDF