DOI QR코드

DOI QR Code

Point Mutations in the Split PLC-γ1 PH Domain Modulate Phosphoinositide Binding

  • Kim, Sung-Kuk (Department of Life Science, College of Natural Science, Daejin University) ;
  • Wee, Sung-Mo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Chang, Jong-Soo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kwon, Taeg-Kyu (Depatrment of Immunology, College of Medicine, Keimyung University) ;
  • Min, Do-Sik (Department of Molecular Biology, Pusan National University) ;
  • Lee, Young-Han (Department of Biochemistry, College of Medicine, Youngnam University) ;
  • Suh, Pann-Ghill (Department of Life Science, Pohang University of Science and Technology)
  • Published : 2004.11.30

Abstract

A number of signaling molecules contain small pleckstrin homology (PH) domains capable of binding phosphoinositides or proteins. Phospholipase C (PLC)-${\gamma}1$ has two putative PH domains, an $NH_2$-terminal (PH1) and a split PH domain ($nPH_2$ and $cPH_2$). We previously reported that the split PH domain of PLC-${\gamma}1$ binds to phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)$P_2$) (Chang et al., 2002). To identify the amino acid residues responsible for binding with PI(4)P and PI(4,5)$P_2$, we used site-directed mutagenesis to replace each amino acid in the variable loop-1 (VL-1) region of the PLC-${\gamma}1$ $nPH_2$ domain with alanine (a neutral amino acid). The phosphoinositide-binding affinity of these mutant molecules was analyzed by Dot-blot assay followed by ECL detection. We found that two PLC-${\gamma}1$ nPH2 domain mutants, P500A and H503A, showed reduced affinities for phosphoinositide binding. Furthermore, these mutant PLC-${\gamma}1$ molecules showed reduced PI(4,5)$P_2$ hydrolysis. Using green fluorescent protein (GFP) fusion protein system, we showed that both $PH_1$ and $nPH_2$ domains are responsible for membrane-targeted translocation of PLC-${\gamma}1$ upon serum stimulation. Together, our data reveal that the amino acid residues $Pro^{500}$ and $His^{503}$ are critical for binding of PLC-${\gamma}1$ to one of its substrates, PI(4,5)$P_2$ in the membrane.

Keywords

References

  1. Berridge, M. J. (1993) Inositol trisphosphate and calcium signaling. Nature 361, 315-325. https://doi.org/10.1038/361315a0
  2. Chang, J.-S., Min, D. S., Bae, S.-S., Kim, J. H., Lee, Y. H., Ryu, S. H. and Suh, P.-G. (1996) Overexpression of SH2-SH2-SH3 domain of phospholipase C-$\gamma$l blocks PDGF-induced inositol phosphate generation in NIH 3T3 cells. Mol. Cells 6, 259-265.
  3. Chang, J.-S., Noh, D. Y., Park, I. A, Kim, M. J., Song, H., Ryu, S. H., and Suh, P.-G. (1997) Overexpression of phospholipase C-$\gamma$l in rat 3Yl fibroblast cells leads to malignant transformation. Cancer Res. 57, 5465-5468.
  4. Chang, J.-S., Seok, H., Kwon, T-K., Min, D. S., Ahn, B.-H., Lee, Y. H., Suh, J.-W, Kim, J.-W, Iwashita, S., Omori, A, Ichinose, S., Numata, 0., Seo, J.-K., Oh, Y.-S. and Suh, P.-G. (2002) Interaction of Elongation factor-I$\alpha$ and pleckstrin homology domain of phospholipase C-$\gamma$l with activating its activity. J. Biol. Chem. 277, 19697-19702. https://doi.org/10.1074/jbc.M111206200
  5. Emori, Y., Homma, Y., Sorimachi, H., Kawasaki, H., Nakanishi, 0., Suzuki, K. and Takenawa, T (1989) A second type of rat phosphoinositide-specific phospholipase C containing a srcrelated sequence not essential for phosphoinositide-hydrolyzing activity. J. Biol. Chem. 264, 21885-21890.
  6. Falasca, M., Logan, S. K., Lehto, V. P., Baccante, G., Lemmon, M. A and Schlessinger, J. (1998) Activation of phospholipase C$\gamma$by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 17, 414-422. https://doi.org/10.1093/emboj/17.2.414
  7. Gibson, T J., Hyvonen, M., Musacchio, A, Saraste, M. and Birney, E. (1994) PH domain: the first anniversary. Trends Biochem. Sci. 19, 349-353. https://doi.org/10.1016/0968-0004(94)90108-2
  8. Haslam, R J., Koide, H. B. and Hemmings, B. A (1993) Pleckstrin domain homology. Nature 363, 309-310.
  9. Horstman, D. A., DeStefano, K. and Carpenter, G. (1996) Enhanced phospholipase C-$\gamma$l activity produced by association of independently expressed X and Y domain polypeptides. Proc. Natl. Acad. Sci. USA 93, 7518-7521. https://doi.org/10.1073/pnas.93.15.7518
  10. Ji, Q.-S., Winnier, G. E., Niswender, K. D., Horstman, D., Wisdom, R, Magnuson, M. A and Carpenter, G. (1997) Essential role of the tyrosine kinase substrate phospholipase C-$\gamma$l in mammalian growth and development. Proc. Natl. Acad. Sci. USA 94, 2999-3003. https://doi.org/10.1073/pnas.94.7.2999
  11. Lemmon, M. A, Ferguson, K. M. and Schlessinger, J. (1996) PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85, 621-624. https://doi.org/10.1016/S0092-8674(00)81022-3
  12. Lemmon, M. A. and Ferguson, K. M. (1998) Pleckstrin homology domains. Curr. Top. Microbiol. 228, 39-74.
  13. Lemmon, M. A and Ferguson, K. M. (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochemical J. 350, 1-18. https://doi.org/10.1042/0264-6021:3500001
  14. Mayer, B. J., Ren, R., Clark, K. L. and Baltimore, D. (1993) A putative modular domain in diverse signaling proteins. Cell 73, 629-630. https://doi.org/10.1016/0092-8674(93)90244-K
  15. Nishizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9, 484-496.
  16. Pitcher, J. A, Touhara, K., Payne, E. S. and Lefkovitz, R. J. (1995) Pleckstrin homology domain-mediated membrane association and activation of the $\beta$-adrenergic receptor kinase requires coordinate interaction with G$\beta$$\gamma$ subunits and lipid. J. Biol. Chem. 270, 11707-11710.
  17. Razzini, G., Brancaccio, A, Lemmon, M. A, Guarnier, S. and Falasca, M. (2000) The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase C-$\beta$l. J. Biol. Chem. 275, 14873-14881. https://doi.org/10.1074/jbc.275.20.14873
  18. Rebecchi, M. J. and Scarlata, S. (1998) Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27, 503-528. https://doi.org/10.1146/annurev.biophys.27.1.503
  19. Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281-312. https://doi.org/10.1146/annurev.biochem.70.1.281
  20. Stevenson, J. M., Perera, I. Y. and Boss, W F. (1998) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds to phosphatidylinositol 4-monophosphate. J. Bioi. Chem. 273, 22761-22767. https://doi.org/10.1074/jbc.273.35.22761
  21. Suh, P.-G., Ryu, S. H., Moon, K. H., Suh, H. W. and Rhee, S. G. (1988) Inositol phospholipids-specific phospholipase C: complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proc. Natl. Acad. Sci. USA 85, 5419-5423. https://doi.org/10.1073/pnas.85.15.5419
  22. Touhara, K., Inglese, J., Pitcher, J. A., Shaw, G. and Lefkowitz, R J. (1994) Binding of G protein $\beta$$\gamma$ subunit to pleckstrin homology domains. J. Biol. Chem. 269, 10217-10220.
  23. Yao, L., Suzuki, H., Ozawa, K., Deng, J., Lehe, C., Fukamachi, H., Anderson, W G., Kawakami, Y. and Kawakami, T (1997) Interaction between protein kinase C and pleckstrin homology domains. Inhibition by phosphatidylinositol 4,5-bisphosphate and phorbol 12-myristate 13-acetate. J. Biol. Chem. 272, 13033-13039. https://doi.org/10.1074/jbc.272.20.13033
  24. Yao, L., Janmey, P., Friger, L. G., Han, W., Fujita, J., Kawakami, Y., Apgar, J. R. and Kawakami, T. (1999) Pleckstrin homology domains interact with filamentous actin. J. Biol. Chem. 274, 19752-19761. https://doi.org/10.1074/jbc.274.28.19752

Cited by

  1. A double point mutation in PCL-γ1 (Y509A/F510A) enhances Y783 phosphorylation and inositol phospholipid-hydrolyzing activity upon EGF stimulation vol.42, pp.3, 2010, https://doi.org/10.3858/emm.2010.42.3.023
  2. Lipid and Protein Co-Regulation of PI3K Effectors Akt and Itk in Lymphocytes vol.6, 2015, https://doi.org/10.3389/fimmu.2015.00117
  3. Calcium signalling and cell-fate choice in B cells vol.7, pp.10, 2007, https://doi.org/10.1038/nri2172