• Title/Summary/Keyword: Phosphine

Search Result 118, Processing Time 0.026 seconds

Carbonylative Cyclization of Unsaturated Carboxylic Acids by Palladium Complexes with Phosphines [III] Palladium (0, II)-Phosphine Complexes Catalyzed Cabonylation of Unsaturated Carboxylic Acids and It's Theoretical Studies (포스핀류가 배위된 팔라듐 착물에 의한 불포화카르복실산의 카르보닐화 고리반응 (제 3 보). 팔라듐 (0, II)-포스핀계 착물에 의한 불포화카르복실산의 카르보닐화 반응 및 그의 이론적 연구)

  • Myung-Ki Doh;Bong-Gon Kim;Maeng-Jun Jung;Young-Dae Song;Park Byung-Kak
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.10
    • /
    • pp.903-909
    • /
    • 1993
  • Reaction mechanism of palladium(0, II)-phosphines complexes catalyzed cyclocarbonylation for unsaturated carboxylic acid such as crotonic acid, methacrylic acid and 3-butenoic acid has been investigated by product analysis, molecular mechanics and extended Huckel molecular orbital method. Reaction of 3-butenoic acid with palladium(0, II)-phosphines catalyst gives palladium containing cycloester through intermediate palladium-olefin ${\pi}$ -complex in the catalytic carbonylation. Palladium(0, II)-phosphines complexes catalyze the cyclocarbonylation of 3-butenoic acid to give 3-methylsuccinic anhydride and glutaric anhydride. But ${\pi}$ -complexes with palladium(0, II)-phosphines and unsaturated carboxylic acids such as crotonic acid and methacrylic acid are not effective the catalytic cyclocarbonylation.

  • PDF

Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials

  • Jeon, Young-Min;Lee, In-Ho;Lee, Chil-Won;Lee, Jun-Yeob;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2955-2960
    • /
    • 2010
  • Spiro-type orange phosphorescent host materials, 9-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-1P) and 5-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-2P) were successfully prepared by a lithiation reaction followed by a phosphination reaction with diphenylphosphinic chloride. The EL characteristics of OPH-1P and OPH-2P as orange host materials doped with iridium(III) bis(2-phenylquinoline)acetylacetonate ($Ir(pq)_2acac$) were evaluated. The electroluminescence spectra of the ITO (150 nm)/DNTPD (60 nm)/NPB (30 nm)/OPH-1P or OPH-2P: $Ir(pq)_2acac$ (30 nm)/BCP (5 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) devices show a narrow emission band with a full width at half maximum of 75 nm and $\lambda_{max}$ = 596 nm. The device obtained from OPH-1P doped with 3% $Ir(pq)_2acac$ showed an orange color purity of (0.580, 0.385) and an efficiency of (14 cd/A at 7.0 V). The ability of the OPH-P series to combine a high triple energy with a low operating voltage is attributed to the inductive effect of the P=O moieties and subsequent energy lowering of the LUMO, resulting in the enhancement of both the electron injection and transport in the device. The overall result is a device with an EQE > 8% at high brightness, but operating voltage of less than 6.4 V, as compared to the literature voltages of ~10 V.

Fabrication and Characterization of LPCVD LPCVD $P_2O_5-SiO_2$ Filmsfor Integrated Optics (2):-Comparison Between TMPate and $PH_3$ as a Dopant of P in PSG Films- (LPCVD $P_2O_5-SiO_2$ 집적광학박막의 제작 및 특성연구(2): TMPate와 $PH_3$의 비교)

  • 정환재;이형종;이용태;전은숙;김순창;양순철
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.233-238
    • /
    • 1995
  • '#65279;We made $P_2O_5-SiO_2$ films on silicon for integrated optics application by low pressure chemical vapor deposition using TEOS(tetraethylorthosilicate), TMPite(trimethylphosphite) and phosphine($PH_3$). And We studied and compared between TMPite and PH, as a dopant of P in PSG films in the aspect of the de,position characteristics. Deposition rate of TMPate-PSG films was $55 \AA/min$ which was smaller than 90 A/min , that of $PH_3-PSG$ films. Thickness deviation of TMPate-PSG films was 2% and that of PH3-PSG was 4.5%. So TMPate-PSG films had a good quality in thickness uniformity. The range of refractive index was controlled from 1.445 to 1.468 at 633 nm in TMPate-PSG films and it was controlled from 1.456 to 1.476 in $PH_3-PSG$ films.

  • PDF

Two-zone 확산법을 이용한 다결정 실리콘 박막으로의 Phosphorus 도핑에 관한 연구

  • 황민욱;김윤해;이석규;엄명윤;박영욱;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.81-81
    • /
    • 2000
  • 본 연구는 고집적 반도체 소자의 제조 공정에 있어서 산화막을 형성하지 않고 굴곡진 표면을 균일하게 고농도로 도핑하기 위한 방안의 일환으로 기존의 PH3 대신 고체 P를 직접 이용한 2-zone 확산법으로 다결정 Si에 도핑하는 방법을 채택하고, 그 rksmdtjddmdf 검토하는데 목적이 있다. 도핑 시간에 따른 확산 경향을 살펴본 결과, 시간이 증가함에 따라 도핑이 증가하는 뚜렷한 경향을 나타내었으며, 온도가 증가할수록 시간에 따른 농도의 증가량이 커지는 것을 알 수 있었다. 따라서, 고온에 비해 저온에서 더 빨리 pile-up이 일어나며 표면 부근의 농도가 포화상태에 빨리도달하는 것을 알 수 있었다. 다결정 Si에서의 확산거동을 살펴본 결과, 결정립 크기가 적을수록 저항이 높게 나타났으며, 단결정 Si의 저항값보다 약 4~5배 가까이 높은 값을 나타내었다. 또한 동일한 온도에서 시간에 따라 표면 부근의 pile-up 현상이 증가하는 뚜렷한 경향을 보여 주었다. 온도가 감소할수록 pili-up 현상이 증가하는 경향을 나타내었으며, 입계를 통한 빠른 확산에 의해 단결정 Si에 비해 표면 pile-up의 포화가 늦게 일어나는 것을 알 수 있었다. 고체 P를 source로 사용한 경우와 PH3 (phosphine)을 source로 사용한 경우를 비교 분석한 결과, 75$0^{\circ}C$에서 PH3에 비해 고체 P를 사용한 경우의 표면농도가 약 50배 정도로 높게 도핑된 것을 알 수 있었다. 도핑된 P중에서 전기적으로 활성화되어 있는 성분을 알아본 결과, SIMS의 결과와 유사하게 고체 P의 경우가 약 50배 높은 값을 나타내었다. 실제 소자의 특성을 알아보기 위하여 커패시터를 제작하여 측정하여 본 결과, 추가의 도핑을 하지 않은 시편에 비해 고체 P를 도핑한 시편이 약 8%의 Cmin 값의 증가를 보였으며, PH3에 비해 약 3%의 증가된 값을 나타냈었다. 누설전류 특성은 2V에서 수 fA/$\mu\textrm{m}$2로 양호하게 나타났다. 실험 결과 고체 P를 이용한 경우 더 우수한 특성을 나타내었으나, 예상과는 달리 차이가 적게 나타났다. 그 원인은 소자 제조 공정에서 콘택 부분에 큰 저항 성분이 형성되어 생긴 문제로 생각된다. 또한 실험에 사용된 유전체의 두께가 두꺼워 HSG 사이의 갭 부분이 캐패시턴스 증가에 기여를 충분히 못한 것으로 사료된다. 따라서, 제조 공정 상의 문제점을 제거하고 고체 P를 사용할 경우 본 실험에 비해 보다 증진된 특성을 보여줄 것으로 기대된다. 이상의 결론을 토대로 볼 때, 2-zone 확산법을 이용한 P 도핑 방법은 저온에서 효과적으로 다결정 Si에 고농도의 도핑을 할 수 있다고 생각된다.

  • PDF

Synthesis and Characterization of Group VI Metal Carbonyl Complexes Containing closo-1,2-$(PPh_2)_2$-1,2-$C_2B_1_0H_1_0$ and Their Conversion to Metal Carbene Complexes

  • 박영일;김세진;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1061-1066
    • /
    • 1997
  • The complexes M(CO)4-1,2-(PPh2)2-1,2-C2B10H10 (M=Cr 2a, Mo 2b, W 2c) have been prepared in good yields from readily available bis-diphenylphosphino-o-carboranyl ligand, closo-1,2-(PPh2)2-1,2-C2B10H10 (1), by direct reaction with Group Ⅵ metal carbonyls. The infrared spectra of the complexes indicate that there is an octahedral disposition of chelate bis-diphenylphosphino-o-carboranyl ligand around the metal atom. The crystal structure of 2a was determined by X-ray diffraction. Complex 2a crystallizes in the monoclinic space group P21/n with cell parameters a = 12.2360(7), b = 17.156(1), c = 16.2040(6) Å, V = 3354.1(3) Å3, and Z =4. Of the reflections measured a total of 2514 unique reflections with F2 > 3σ(F2) was used during subsequent structure refinement. Refinement converged to R1 = 0.066 and R2 = 0.071. Structural studies showed that the chromium atom had a slightly distorted pseudo-octahedral configuration about the metal center with two phosphine groups of o-carborane occupying the equatorial plane cis-orientation to each other. These metal carbonyl complexes are rapidly converted to the corresponding metal carbene complexes, [(CO)3M=C(OCH3)(CH3)]-1,2-(PPh2)2-1,2-C2B10H10 (M= Cr 3a, Mo 3b, W 3c), via alkylation with methyllithium followed by O-methylation with CF3SO3CH3.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation

  • Kwon, Jae Won;Jeon, Young Keul;Kim, Jinsung;Kim, Sang Jeong;Kim, Sung Joon
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.758-769
    • /
    • 2021
  • Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.

Effect of Photo Initiator Content and Light Exposure Time on the Fabrication of Al2O3 Ceramic by DLP-3D Printing Method (광개시제 함량과 노광 시간이 DLP기반 알루미나 3D 프린팅 공정에 미치는 영향)

  • Kim, Kyung Min;Jeong, Hyeondeok;Han, Yoon Soo;Baek, Su-Hyun;Kim, Young Do;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • In this study, a process is developed for 3D printing with alumina ($Al_2O_3$). First, a photocurable slurry made from nanoparticle $Al_2O_3$ powder is mixed with hexanediol diacrylate binder and phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator. The optimum solid content of $Al_2O_3$ is determined by measuring the rheological properties of the slurry. Then, green bodies of $Al_2O_3$ with different photoinitiator contents and UV exposure times are fabricated with a digital light processing (DLP) 3D printer. The dimensional accuracy of the printed $Al_2O_3$ green bodies and the number of defects are evaluated by carefully measuring the samples and imaging them with a scanning electron microscope. The optimum photoinitiator content and exposure time are 0.5 wt% and 0.8 s, respectively. These results show that $Al_2O_3$ products of various sizes and shapes can be fabricated by DLP 3D printing.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

Sputum Processing Method for Lateral Flow Immunochromatographic Assays to Detect Coronaviruses

  • Aram Kang;Minjoo Yeom;Hyekwon Kim;Sun-Woo Yoon;Dae-Gwin Jeong;Hyong-Joon Moon;Kwang-Soo Lyoo;Woonsung Na;Daesub Song
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.11.1-11.10
    • /
    • 2021
  • Coronavirus causes an infectious disease in various species and crosses the species barriers leading to the outbreak of zoonotic diseases. Due to the respiratory diseases are mainly caused in humans and viruses are replicated and excreted through the respiratory tract, the nasal fluid and sputum are mainly used for diagnosis. Early diagnosis of coronavirus plays an important role in preventing its spread and is essential for quarantine policies. For rapid decision and prompt triage of infected host, the immunochromatographic assay (ICA) has been widely used for point of care testing. However, when the ICA is applied to an expectorated sputum in which antigens are present, the viscosity of sputum interferes with the migration of the antigens on the test strip. To overcome this limitation, it is necessary to use a mucolytic agent without affecting the antigens. In this study, we combined known mucolytic agents to lower the viscosity of sputum and applied that to alpha and beta coronavirus, porcine epidemic diarrhea virus (PEDV) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, spiked in sputum to find optimal pretreatment conditions. The pretreatment method using tris(2-carboxyethyl)phosphine (TCEP) and BSA was suitable for ICA diagnosis of sputum samples spiked with PEDV and MERS-CoV. This sensitive assay for the detection of coronavirus in sputum provides an useful information for the diagnosis of pathogen in low respiratory tract.