• Title/Summary/Keyword: Phosphatidylinositol

Search Result 281, Processing Time 0.053 seconds

Influence of the Substrate and Inhibitors Related to Phosphatidylinositol Metabolism in the Maturation Processes of Porcine Oocytes (돼지 난모세포의 성숙과정에서 Phosphatidylinositol 대사의 기질 및 억제인자의 영향)

  • 강승률;양보석;조인철;이성수;정진관
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • We evaluated the effects of the substrate and inhibitors related to phosphatidylinositol metabolism on in vitro maturation and fertilization of porcine oocytes. Cumulus-oocyte complexes were cultured in mTLP-PVA medium supplemented with or without inositol (250 mM) fur 46h. Subsequently, these oocytes were inseminated with fresh boar semen in mTALP-PVA medium for 6h. At 6h after insemination, oocytes were cultured for further 12 h in TCM-199 supplemented with 10% FBS (fetal bovine serum). The higher percentage of oocytes in inositol-supplemented medium reached metaphase of the second meiotic division compared to those in control (81.4% vs. 67.3%; P<0.()5). following 18 h of insemination, more number of male pronuclei were formed in the oocytes matured in inositol-supplemented medium than in those of control experiment (42.0% vs. 27.3%; P<0.05). When oocytes were cultured in medium with 10mM LiCl (chloride lithium) or 0.5mM dbcAMP (dibutyryl cyclic adenosine monophosphate) to determine the role of inositol on the maturation of oocytes, these two drugs inhibited the meiotic division of oocytes (P<0.05). However, addition of inositol to the culture medium did overcome the inhibitory effect of these drugs on the oocyte maturation. DbcAMP and verapamil supplemented synergistically arrested the meiotic division of oocytes. Addition of verapamil did not inhibit germinal vesicle breakdown, but it severly inhibited the second meiotic division of oocytes. These results suggest that inositol exert its improving effects on maturation, by activating the PI (phosphatidylinositol) cycle and causing beneficial changes in both cytoplasm and membrane of oocytes.

  • PDF

Antagonists of Phosphatidylinositol 3-Kinase Block Phosphorylation-Dependent Activation of the Leukocyte NADPH Oxidase in a Cell-Free System

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.182-187
    • /
    • 1997
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_2^-$ at the expense of NADPH. The enzyme is dormant in resting neutrophils and becomes activated on stimulation. During activation, $p47^{phox}\;(\underline{ph}agocyte\;\underline{ox}idase\;factor)$, a cytosolic oxidase subunit, becomes extensively phosphorylated at a number of serines located between S303-S379. Oxidase activation can also be achieved by the addition of phosphorylated recombinant $p47^{phox}$ by protein kinase C in the cell-free system in the presence of $GTP{\gamma}S$. The cell-free activation is inhibited by wortmannin and LY294002. specific inhibitors of phosphatidylinositol 3kinase (PI 3-kinasel) These results indicate that PI 3-kinase may playa pivotal role in the activation of NADPH oxidase.

  • PDF

Phosphatidylinositol 3-Kinase Regulates Nuclear Translocation of NF-E2-Related Factor 2 through Actin Rearrangement in Response to Oxidative Stress

  • Kang, Keon-Wook;Lee, Seung-Jin;Park, Jeong-Weon;Kim, Sang-Geon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.241.3-242
    • /
    • 2002
  • Expression of phase II detoxifying genes is regulated by NF-E2-related factor 2 (Nrf2)-mediated antioxidant response element (ARE) activation. Phosphatidylinositol 3-kinase (PI3-kinase) plays an essential role in ARE-mediated rGSTA2 induction by oxidative stress and controls microfilaments and translocation of actin-associated proteins. This study was designed to investigate the P13-kinase-mediated nuclear translocation of Nrf2 and the interaction of Nrf2 with actin. (omitted)

  • PDF

Activation of Signal Transduction Pathways Changes Protein Phosphorylation Patterns in the Rat Hvpothalamus (흰쥐 시상하부에서 신호전달계의 활성화에 의한 단백질 인산화의 변화)

  • Lee, Byung-Ju;Sun
    • The Korean Journal of Zoology
    • /
    • v.37 no.1
    • /
    • pp.130-136
    • /
    • 1994
  • Although alteration in protein phosphorylation by specific protein kinases is of importance in transducing cellular signals in a variety of neural/endocrine systems, little is known about protein phosphorylation in the hvpothalamus. The present study aims to explore whether activation of the second messenger-dependent protein kinases affects phosphorylation of specific proteins using a cell free phosphorylation system followed by SDS-polvacrylamide gel electrophoresis. Cytoplasmic fractions derived from hvpothalami of immature rats were used as substrates and several activators and/or inhibitors of CAMP-, phosphatidylinositol- and Ca2+-calmodulin-dependent protein kinases were assessed. Many endogenous proteins were extensively phosphorylated and depending on the signal transduction pathways, phosphorvlation profiles were markedly different. The present data indicate that extracellular signals may affect cellular events through protein phosphorylation by second messengers-protein kinases in the rat hypothalamus.

  • PDF

Effect of Phospholipase D on the L-$\alpha$-Dimyristoyl-phosphatidyl Choline Liposome Containing Cholesterol, L-$\alpha$-Phosphatidylinositol and L-$\alpha$-Phosphatidylserine (Cholesterol, L-$\alpha$-Phosphatidylinositol, L-$\alpha$-Phosphatidylserine을 함유한 L-$\alpha$-Dimyristoyl-phosphatidyl Choline 리포솜에 대한 Phospholipase D의 작용에 관한 연구)

  • 이은옥
    • YAKHAK HOEJI
    • /
    • v.27 no.4
    • /
    • pp.249-256
    • /
    • 1983
  • When the reaction rate constant k of phospholipase D on liposome was measured by the ANS fluorometry, k of phospholipase D on DMPC liposome which was made of L-$\alpha$-PI, cholesterol and L-$\alpha$-PS decreased than that of phospholipase D on DMPC liposome with cholesterol or with PI and cholesterol. Optimal $Ca^{2+}$ concentration, the most important factor on effect of phospholipase D, also decreased to 1mM, as compared with 10mM and 60mM respectively when cholesterol and PI were added, and cholesterol only was added. The change of cholesterol Mol% had a great influence on k value of phospholipase D. But in case of addition of L-$\alpha$-PS to cholesterol, the influence was relatively diminished.

  • PDF

Effect of Ginsenosides from Red Ginseng on the Enzymes of Cellular Signal Transduction System (홍삼 사포닌류(Ginsenosides)의 세포 신호 전달계 효소에 미치는 영향)

  • 임경택;최진성
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • The present study was conducted to assess the effect of total saponins from Korean red ginseng on the biosynthesis of inositol phospholipids in vivo and also effects on the metabolic enzymes, such as phosphatidylinositol-specific phospholipase C(Pl-PLC) and PI-kinases. The administration of 0.1% saponin solution, 0.1 ml 3 times a day intraperitoneally to 5 mice for 30 days has increased a 23% of the body weight when it compared with a control group. The amounts of 32P-phoschorus radioactivity incorporated into the phosphoinositides from the liver and brain tissues have increased a 310% and 260%, respectively, in the saponin treated mice. The activities of PI-PLC from liver and brain were stimulated in the various amounts by the conditions treated with saponins. The PI-kinases from liver and brain were also activated by saponins, but its effect was lower than that of PI-PLC. From these results, it was confirmed that red ginseng saponins have affected positively not only on the biosynthesis of phosphoinositides but also on the PI-PLC and PI-kinases related to the cellular signal transduction.

  • PDF

Inhibition of Stem Cell Factor- and Nerve Growth Factor-Induced Morphological Change by Wortmannin in Mast Cells

  • Kim, Hyung-Min;Moon, Young-Hoe;An, Nyun-Hyung
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.108-112
    • /
    • 1999
  • Recombinant murine stem cell factor (rmSCF) or recombinant murine nerve growth factor (rmNGF) induced the morphological change of large numbers of rat peritoneal mast cells (RPMC). We investigated the role of phosphatidylinositol $3^{l}-kinase$ (PI3-kinase) in receptors-mediated morphological change in RPMC. Exposure of RPMC to PI3-kinase inhibitor, wortmannin, before the addition of rmSCF and rmNGF antagonized those factors-induced morphological change. These results suggest that the PI3-kinase is involved in the signal transduction pathway responsible for morphological change following stimulation of rmSCF and rmNGF and that wortmannin blocks these responses.

  • PDF

The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase-Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway

  • Yu, Changsong;Jia, Gang;Deng, Qiuhong;Zhao, Hua;Chen, Xiaoling;Liu, Guangmang;Wang, Kangning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.731-738
    • /
    • 2016
  • Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that $100{\mu}g/mL$ LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ's expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.