• 제목/요약/키워드: Phosphates

검색결과 306건 처리시간 0.023초

Influence of Carbon and Nitrogen Sources in Solubilization of Hardly Soluble Mineral Phosphates by Penicillium Oxalicum CBPS-Tsa

  • Kim, Eun-Hee;Sundaram, Seshadri;Park, Myoung-Su;Shin, Wan-Sik;Sa, Tong-Min
    • 한국환경농학회지
    • /
    • 제22권3호
    • /
    • pp.197-202
    • /
    • 2003
  • Phosphorus is one of the major plant growth limiting nutrients, despite being abundant in soils in both inorganic and organic forms. Phosphobioinoculants in the form of microorganisms can help in increasing the availability of accumulated phosphates for plant growth by solubilization. Penicillium oxalicum CBPSTsa, isolated from paddy rhizosphere, was studied for its phosphate solubilization. The influence of various carbon sources like glucose, sucrose, mannitol and sorbitol and nitrogen sources like arginine, sodium nitrate, potassium nitrate, ammonium chloride and ammonium sulphate were evaluated using liquid media with tricalcium phosphate (Ca-P), ferric phosphate (Fe-P) and aluminium phosphate (Al-P). Maximum soluble phosphate of 824 mg/L was found in the amendment of sucrose-sodium nitrate from 5 g/L of Ca-P. Mannitol, sorbitol, and ariginine were poor in phosphate solubilization. While sucrose was better carbon source in solubilization of Ca-P and Al-P, glucose fared better in solubilization of Fe-P. Though all the nitrogen sources enhanced P solubilization, nitrates were better than ammonium In the amendments of ammonium chloride and ammonium sulphate, higher uptake of available phosphates by the fungus was found, and this resulted in depletion of available P in Fe-P amendment Phosphate solubilization was accompanied by acidification of the media, and the highest pH decrease was observed in glucose amendment Among the nitrogen sources, ammonium chloride favored greater pH decrease.

곰팡이 분리주 MT60109가 생산하는 Phospholipase C 저해물질의 분리

  • 오원근;이현선;박찬선;안순철;고학룡;민태익;안종석
    • 한국미생물·생명공학회지
    • /
    • 제25권6호
    • /
    • pp.592-597
    • /
    • 1997
  • During the screening of inhibitors against phospholipase C (PLC) and the formation of inositol phosphates (IP$_{t}$) at NIH3T3${\gamma}$1 cells from microbial secondary metabolites, we selected a fungal strain MT60109 which was capable of producing an inhibitor. By the taxonomic studies, this fungus was identified as Pseudallescheria sp. MT60109 and an inhibitor of PLC was purified by BuOH extraction and chromatographic techniques from the culture broth of Pseudallescheria sp. MT60109. The inhibitor was identified as thielavin B by the physico-chemical properties and spectroscopic analysis of UV, FAB-MS, $^{1}$H, $^{13}$C-NMR, $^{1}$H-$^{1}$H COSY and HMBC. Thielavin B showed potent inhibitory activity against PLC purified from bovine brain with an IC$_{50}$ of 20 $\mu$M. And it also inhibited the formation of inositol phosphates in platelet-derived growth factor (PDGF) -stimulated NIH3T3${\gamma}$1 cells with an IC$_{50}$ of 20 $\mu$M.

  • PDF

발현성 고혈압쥐의 관상순환 기능과 심장근의 에너지 대사에 관한 생체외 에너지원의 관류 연구 (Substrate-Perfusion Studies on Coronary Circulation and Myocardial Energy Metabolism in Spontaneously Hypertensive Rat Hearts)

  • 김은지
    • Journal of Nutrition and Health
    • /
    • 제28권2호
    • /
    • pp.115-126
    • /
    • 1995
  • The effects of energy-yielding substrates on coronary circulation, myocardial oxygen metabolism, and intramyocytic adenylates of perfused Wistar control rat(WC) and spontaneously hypertensive rat(SHR) hearts were examined under basal and $\beta$-adrenergic stimulation conditions. The perfusion medium (1.0mM Ca2+) contained 5mM glucose (+5U/l insulin) in combination with 5mM pyruvate, 5mM lacate, 5mM acetate, or 5mM octanoate as energy substrates. Hearts were perfused with each substrate buffer for 20min under basal conditions. Coronary functinal hyperemia was induced by infusing for 20min isoproterenol (ISO, 1uM), a $\beta$-receptor agonist. Cardiac adenylates, glycolytic intermediates, and coronary venous lactate were measured by using an enzymatic analysis technique. Under basal conditions, acetate and octanoate significantly increased coronary flow(CF) of WC in parallel with myocardial oxygen consumption. However, CF of SHR was partly attenuated by coronary vasoconstriction despite metabolic acidosis. In addition, pyruvate and lactate depressd ISO-induced coronary functional hyperemia in SHR. It should be noted that octanoate exhibited coronary dysfunction under ISO conditions. On the other hand, fat substrates depleted myocardial high energy phosphate pool and accumulated breakdown intermediates. In SHR with coronary vasoconstriction under basal conditions, and with depressed coronary functional hyperemia, high energy phosphates were greatly depleted. These results suggest that energy substrates in the myocardium and coronary smooth muscle alter remarkably coronary circulation, and that coronary circulatory function is associated with a reserve of high energy phosphates and a balance between breakdown and nono synthesis of energy phosphates. These findings could be explained by alterations in the cytosolic redox state manipulated by LDH and hence in the cytosolic phosphorylation potential, which might be involved in hypertension of SHR.

  • PDF

건식법과 Extrusion 공정에 의해 제조한 인산전분의 이화학적 성질 비교 (Comparison of Physicochemical Properties of Starch Phosphates Prepared by Dry Heating and Extrusion Process)

  • 김종태;류기형;김동철;김철진
    • 한국식품과학회지
    • /
    • 제22권6호
    • /
    • pp.651-658
    • /
    • 1990
  • 옥수수전분에 인산화반응 시약으로 Sodium tripolyphosphate(STPP)를 반응시켜 건식법, 호화법 및 Extrusion 공법에 의하여 인산전분을 제조하고 그 이화학적 성질을 비교하였다. 건식법에 의한 인산전분(DSP) 제조시 반응온도는 인산염 치환도에 가장 큰 영향을 미치는 인자로 작용하였다. 호화법에 의해 인산전분(GSP)을 제조하였을 경우는 건식법보다 치환도가 증가하였으나 반응온도가 $85^{\circ}C$ 이상에서는 큰 변화가 없었다. Extrusion공정에 의한 인산전분(WESP) 제조는 원료수분 20, 25, 30%에서 치환도 $0.0066{\sim}0.0083$의 값을 보였다. DSP 시료의 호화온도는 치환도가 증가할 수록 낮아졌고 투명도가 증가되었으나 WESP 시료는 원료전분보다 높은 호화온도를 보였다. 인산전분 extrudate의 겉보기 점도는 DSP 시료보다 낮은 점도값을 보였다. 모든 인산전분 시료가 원료전분에 비해 높은 노화안정성을 보였다.

  • PDF

Effect of Oyster Shell Calcium Powder on the Quality of Restructured Pork Ham

  • Choi, Jung-Seok;Lee, Hyun-Jin;Jin, Sang-Keun;Lee, Hyun-Joo;Choi, Yang-Il
    • 한국축산식품학회지
    • /
    • 제34권3호
    • /
    • pp.372-377
    • /
    • 2014
  • This study was conducted to evaluate the effects of oyster shell calcium powder (OSCP) as a substitute for phosphates in curing agent, on the quality of restructured pork ham. Restructured pork ham was processed under six treatment conditions: T1 (no additives), T2 (0.3% sodium tripolyphosphate), T3 (1.5% NaCl+0.5% whey protein), T4 (1.5% NaCl+0.5% whey protein+0.15% OSCP), T5 (1.5% NaCl+0.5% whey protein+0.3% OSCP), and T6 (1.5% NaCl+0.5% whey protein+0.5% OSCP). Addition of OSCP significantly increased the ash content and pH of restructured pork ham (p<0.05), but did not affect the cooking loss and water holding capacity values of restructured pork ham. Addition of OSCP had no effect on Hunter a and b surface color values of restructured pork ham, but did decrease the Hunter L surface color value (p<0.05). The addition of 0.5% OSCP showed significantly higher chewiness and springiness values of restructured pork ham, compared with the addition of phosphates (p<0.05). In conclusion, the addition of OSCP combined with low NaCl and 0.5% whey protein can be considered a viable substitute for phosphates in the curing agent, when processing restructured pork ham.

Elucidating Electrochemical Energy Storage Performance of Unary, Binary, and Ternary Transition Metal Phosphates and their Composites with Carbonaceous Materials for Supercapacitor Applications

  • Muhammad Ramzan Abdul Karim;Waseem Shehzad;Khurram Imran Khan;Ehsan Ul Haq;Yousaf Haroon
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.321-344
    • /
    • 2024
  • Transition metal compounds (TMCs) are being researched as promising electrode materials for electrochemical energy storage devices (supercapacitors). Among TMCs, transition metal phosphates (TMPs) have good, layered structures owing to open framework and protonic exchange capability among different layers, good surface area due to engrossed porosity, rich active redox reaction sites owing to octahedral structure and variable valance metallic ions. Hence TMPs become more ideal for supercapacitor electrode materials compared to other TMCs. However, TMPs have got some issues like low conductivity, rate performance, stability, energy, and power densities. But these problems can be addressed by making their composites with carbonaceous materials, e.g., carbon nanotubes (CNTs), graphene oxide (GO), graphitic carbon (GC), etc. A few factors like high surface area, excellent electrical conductivity of carbon materials and variable valence metal ions in TMPs caused great enhancement in their electrochemical performance. This article tries to discuss and compare the published data, majorly in last decade, regarding the electrochemical energy storage potential of pristine unary, binary, and ternary TMPs and their hybrid composites with carbonaceous materials (CNTs, GOs/rGOs, GC, etc.). The electrochemical performance of the hybrids has been reported to be higher than the pristine counterparts. It is hoped that the current review will open a new gateway to study and explore the high performance TMPs based supercapacitor materials.

식육에서 피틴산염과 인산염의 Escherichia coli O157:H7균에 대한 항균효과 (Antibacterial Activity of Sodium Phytate and Sodium Phosphates Against Escherichia coli O157:H7 in Meats)

  • 허진주;리란;이예은;이기남;남상윤;윤영원;정재황;이상화;유한상;이범준
    • 한국식품위생안전성학회지
    • /
    • 제22권1호
    • /
    • pp.37-44
    • /
    • 2007
  • 피틴산(Phytic acid)dms inositol hexaphosphate로서 식물성 식품 및 씨 중에 1-5%가량 존재하는 자연 항산화 물질로서 소화효소에 의해 쉽게 분해되지 않는다. 한편 인산염은 식육에서 품질개량제로 식육에서의 항균 효과에 대해서는 이미 여러 보고가 있으나 그 결과는 다양하다. 일반적으로 생육에서는 그 효능이 낮은데 이것은 생육에 존재하는 phosphatase의 작용에 의해 인산염들이 가수분해되기 때문이다. 한편 피틴산염은 열에 강하고 쉽게 분해되지 않으므로 생육이나 멸균 처리된 식육에서 공히 인산염들이 가지고 있는 항균효과를 기대할 수 있다. 본 실험에서는 선택배지에서 E. coli O157:H7에 대한 sodium phytate(STP), sodium pyrophosphate(SPP) 및 sodium tripolyphosphate(STPP)의 항균효과를 평가하였고,더불어 생육 및 가열 처리된 식육모델에서 E. coli O157:H7 접종 후에 항균 효과를 비교 평가하였다. 선택된 배지인 tryptic soy broth에서 E. coli O157:H7에 대한 항균 효과는 SPT, SPP 및 STPP의 0.05, 0.1, 0.5%의 세 가지 농도에서 농도에 의존적으로 유의성 있게 세균 증식을 억제시켰으며, 항균효과는 SPP에서 가장 강하게 나타났다. 생육인 닭고기, 돼지고기 및 소고기에 SPT, SPP 및 STPP를 각각 0.05, 0.1, 0.3 그리고 0.5%의 농도별로 첨가했을 때 E. coli O157:H7의 증식이 모두 유의성 있게 감소하였다 (p<0.05). 또한 가열 처리한 식육에서도 이러한 항균효과가 유의적으로 관찰되었으며(p<0.05), SPT는 SPP나 STPP보다 더 강한 항균효과를 보였다. 이러한 항균효과들은 가열처리된 식육보다 생육에서 더욱 강하게 나타났다. SPT, SPP 및 STPP의 첨가는 식육에서 pH를 증가시켰으며, STP의 첨가는 식육에서 soluble orthophosphate 유리에 영향을 주지 않았으나, SPP 및 STPP의 첨가는 식육에서 soluble orthophosphate의 유리를 증가시켰다. 이러한 결과로부터 피틴산염은 이미 알려진 인산염들보다 미약하나마 항균효과가 뛰어나며 더불어 축산식품의 첨가제로서 사용시 식품의 기능성 향상과 더불어 매우 유용하게 사용될 수 있을 것이다.

Antibacterial activity of sodium phytate, sodium pyrophosphate, and sodium tripolyphosphate against Salmonella typhimurium in meats

  • Hue, Jin-Joo;Baek, Dong-Jin;Lee, Yea Eun;Lee, Ki Nam;Nam, Sang Yoon;Yun, Young Won;Jeong, Jae-Hwang;Lee, Sang-Hwa;Yoo, Han Sang;Lee, Beom Jun
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.449-456
    • /
    • 2007
  • The approval of use of certain food-grade phosphates as food additives in a wide variety of meat products greatly stimulated research on the applications of phosphates in foods. Although phosphates have never been classified as antimicrobial agents, a number of investigators have reported that phosphates have antimicrobial activities. Phytic acid is a natural plant inositol hexaphosphate constituting 1-5% of most cereals, nuts, legumes, oil seeds, pollen, and spores. In this study, we investigated antibacterial activities of sodium phytate (SPT), sodium pyrophosphate (SPP), sodium tripolyphosphate (STPP) on Salmonella typhimurium in tryptic soy broth and in row meat media including chicken, pork and beef. SPY, SPP and STPP at the concentrations of 0.5 and 1% dose-dependently inhibited the growth of S. typhimurium in tryptic soy broth at various pHs. The antibacterial activities of SPT and STPP were the stronger than that of SPP. In chicken, pork, and beef, SPT, SPP and STPP at the concentrations of 0.1, 0.5 and 1.0% significantly inhibited the bacterial growth in a dose-dependant manner (p < 0.05). The antibacterial activities of SPT, SPP, and STPP were more effective in chicken than beef. SPT and STPP at the concentration of 1% reduced the bacterial count by about 2 log units. The addition of SPT, SPP and STPP at the concentration of 0.5% in meats increased the meat pHs by 0.28-0.48 units in chicken, pork, and beef. These results suggest that SPT and STPP were equally effective for the inhibition of bacterial growth both in TSB and meat media and that SPT can be used as an animal food additive for increasing shelf-life and functions of meats.