• Title/Summary/Keyword: Phosphate-solubilizing bacteria

Search Result 50, Processing Time 0.029 seconds

Phosphate solubilizing effect by two paraburkholderia bacteria Isolated from button mushroom medium (양송이배지로부터 분리한 두 Paraburkholderia 속 세균에 의한 인산가용화 효과)

  • Yu, Hye-Jin;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.17 no.2
    • /
    • pp.64-69
    • /
    • 2019
  • The present study was conducted to investigate the synergistic effects caused by single and co-inoculation of the phosphate solubilizing bacteria (PSB), Paraburkholderia phenazinium YH3 and Paraburkholderia metrosideri YH4. Phosphate solubilization was assessed by measuring the phosphorus contents for 7 days in a single and co-inoculation medium. Co-inoculation of the two strains was found to release the highest content of soluble phosphorus ($1,250{\mu}g\;mL^{-1}$) into the medium, followed by the single inoculation of P. metrosideri YH4 ($1196.59{\mu}g\;mL^{-1}$) and P. phenazinium YH3 ($994.34{\mu}g\;mL^{-1}$). The highest pH reduction, organic acid production and glucose consumption was also observed in the co-inoculation medium of the two strains. A plant growth promotion bioassay revealed that co-inoculation with the two strains enhanced the growth of romaine lettuce more than single inoculation with either of the two strains (28.5% for leaf and 16.6% for root). Although there was no significant difference between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, the synergistic effects of co-inoculation with PSB could be beneficial for crop growth.

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent (잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성)

  • Choi, Seunghoon;Yoo, Ji-Yeon;Park, SungJin;Park, MinJoo;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.925-933
    • /
    • 2020
  • To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.

Genetic and Phenotypic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan

  • Mehnaz, Samina;Baig, Deeba N.;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1614-1623
    • /
    • 2010
  • Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to $41^{\circ}C$ and at pH 11.

Synergistic effect of phosphate solubilization by Burkholderia strains isolated from button mushroom bed (양송이배지로부터 분리한 Burkholderia균의 인산가용화 공조효과)

  • Park, Ji-Hoon;Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.183-189
    • /
    • 2017
  • This study investigated the synergistic effect of single inoculation and co-inoculation of phosphate-solubilizing bacteria (PSB) Burkholderia metallica JH-7 and Burkholderia contaminans JH-15. Phosphate-solubilizing abilities of these strains were assessed by measuring phosphorus content in culture media that were singly inoculated or co-inoculated with these strains for 7 days. B. metallica JH-7 was found to release the highest content of soluble phosphorus ($140.80{\mu}g\;mL^{-1}$ ) into the medium, followed by single inoculation of B. contaminans JH-15 ($135.95{\mu}g\;mL^{-1}$ ) and co-inoculation of two strains ($134.84{\mu}g\;mL^{-1}$ ). The highest pH reduction, organic acid production, and glucose consumption were observed in the medium inoculated with B. metallica JH-7 alone compared with that in the medium co-inoculated with both the strains. Results of a plant growth promotion bioassay showed 17.4% and 7.48% higher leaf and root growth, respectively, in romaine lettuce inoculated with B. metallica JH-7 alone than in romaine lettuce inoculated with a control strain. However, no significant difference was observed between single inoculation and co-inoculation of these strains with respect to phosphorus release and plant growth. Although the results of the present study did not show the synergistic effect of phosphate solubilization by the PSB strains examined, these results indicate that treatment with PSB exerts a beneficial effect on crop growth.

Comparison on phosphate solubilization ability of Pantoea rodasil and Burkholderia stabilis isolated from button mushroom media (양송이배지로부터 분리한 Pantoea rodasil 와 Burkholderia stabilis의 인산가용화능 비교)

  • Park, Hong-Sin;Yeom, Young-Ho;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • This study investigated the synergistic effect of single inoculation and co-inoculation of phosphate-solubilizing bacteria (PSB) Pantoea rodasil LH-1and Burkholderia stabilis HS-7. Phosphate-solubilizing abilities of these strains were assessed by measuring phosphorus content in culture media that were singly inoculated or co-inoculated with these strains for 7 days. The co-inoculation of P. rodasil LH-1and B. stabilis HS-7 was found to release the highest content of soluble phosphorus ($783.41{\mu}g\;mL^{-1}$) into the medium, followed by single inoculation of B. stabilis HS-7B ($743.90{\mu}g\;mL^{-1}$) and P. rodasil LH-1 ($736.59{\mu}g\;mL^{-1}$). The highest pH reduction, organic acid production, and glucose consumption were also observed in the medium inoculated with both the strains, compared with that in the medium inoculated with the strain alone. Results of a plant growth promotion bioassay showed 7.7% and 15.5% higher leaf and root growth, respectively, in romaine lettuce co-inoculated with P. rodasil LH-1and B. stabilis HS-7 than those inoculated with the strain alone. However, no significant difference was observed between single inoculation and co-inoculation of these strains with respect to phosphorus release and plant growth. Although the results of the present study did remarkdly not show the synergistic effect of phosphate solubilization by co-inoculation of the PSB strains examined, these results indicate that treatment with PSB exerts a beneficial effect on crop growth.

Biological Control of Bacterial Fruit Blotch of Watermelon Pathogen (Acidovorax citrulli) with Rhizosphere Associated Bacteria

  • Adhikari, Mahesh;Yadav, Dil Raj;Kim, Sang Woo;Um, Young Hyun;Kim, Hyun Seung;Lee, Seong Chan;Song, Jeong Young;Kim, Hong Gi;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.170-183
    • /
    • 2017
  • Bacterial fruit blotch (BFB), which is caused by Acidovorax citrulli, is a serious threat to watermelon growers around the world. The present study was conducted to screen effective rhizobacterial isolates against 35 different A. citrulli isolates and determine their efficacy on BFB and growth parameters of watermelon. Two rhizobacterial isolates viz. Paenibacillus polymyxa (SN-22), Sinomonas atrocyanea (NSB-27) showed high inhibitory activity in the preliminary screening and were further evaluated for their effect on BFB and growth parameters of three different watermelon varieties under greenhouse conditions. The greenhouse experiment result revealed that SN-22 and NSB-27 significantly reduced BFB and had significant stimulatory effect on total chlorophyll content, plant height, total fresh weight and total dry weight compared to uninoculated plants across the tested three watermelon varieties. Analysis of the 16S ribosomal RNA (rRNA) sequences revealed that strains SN-22 belong to P. polymyxa and NSB-27 to S. atrocyanea with the bootstrap value of 99% and 98%, respectively. The isolates SN-22 and NSB-27 were tested for antagonistic and PGP traits. The result showed that the tested isolates produced siderophore, hydrolytic enzymes (protease and cellulose), chitinase, starch hydrolytic enzymes and they showed phosphate as well as zinc solubilizing capacity. This is the first report of P. polymyxa (SN-22) and S. atrocyanea (NSB-27) as biocontrol-plant growth promoting rhizobacteria on watermelon.

Plant Growth Promotion by Isolated Strain of Bacillus subtilis for Revegetation of Barren Lakeside Area (호안나대지 식생복원을 위한 Bacillus subtilis 분리균주의 식물생장 촉진능)

  • Kim, Kyung-Mi;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • Rhizobacterial strain isolated from barren soil, Bacillus subtilis RFO41 exhibits a high level of phosphate solubilizing activity and produces some phytohormones. Its promoting effect on the growth of Xanthium italicum Moore, a wild plant growing at lakeside barren land and thus a good candidate plant for revegetation of barren lakeside was evaluated in the in situ test for 19 weeks at Lake Paro, Kangwon-do. Strain RFO41 could enhance the dry weight of X. italicum by 67.7%. It also increased the shoot length of X. italicum plant by 21.1% compared to that of uninoculated control. Both growth enhancements had statistical significance. However, the inoculation did not show any effect on the root growth, which might be due to the breakage of tiny root. Denaturing gradient gel electrophoresis analysis showed that the inoculated bacteria were maintained in the soils, and the indigenous bacterial community did not exhibit any significant change. This plant growth promoting capability may be utilized as an environment-friendly and low cost revegetation method, especially for the sensitive areas such as barren lakeside lands.

A Study on the Application of Enhanced Phytoremediation with Plant Growth Promoting Rhizobacteria for Zn Contaminated Rice Paddy Soil (식물성장근권 미생물 적용에 의한 Zn 오염 논토양 식물상정화증진기법 적용에 관한 연구)

  • Kim, Tae-Sung;Choi, Sang-Il;Yang, Jae-Kyu;Lee, In-Sook;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.15-26
    • /
    • 2010
  • The contaminated soils near abandoned mine area can threaten human's health and natural ecosystems through multiple pathways. Remediation of contaminated soil using physicochemical technologies are expensive and destructive of soil environments. On the other hand, environmentally friendly approach that maximize biological remediation, that is, phytoremediation, attracts attention as a low carbon green growth technology. This research is a field demonstration study, focused on the enhanced phytoremediation by bioaugmenting PGPR(Plant Growth Promoting Rhizobacteria)that is helpful on the growth of and heavy metal removal by Echinochloa frumentacea, at a Zn contaminated paddy soil near SamBo mine at Hwasung, Kyunggi. The results showed that the zinc removal by the plant with PSM(Phosphate Solubilizing Bacteria), a kind of PGPR, was three times higher than that by the control. The results are valuable as it is a result from the field-scale technology demonstration. The results also implies that application of PGPR can enhance heavy metal removal from contaminated soil in full scale phytoremediation using Echinochloa frumentacea.

Biological Control of Fusarium oxysporum, the Causal Agent of Fusarium Basal Rot in Onion by Bacillus spp.

  • Jong-Hwan Shin;Ha-Kyoung Lee;Seong-Chan Lee;You-Kyoung Han
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.600-613
    • /
    • 2023
  • Fusarium oxysporum is the main pathogen causing Fusarium basal rot in onion (Allium cepa L.), which incurs significant yield losses before and after harvest. Among management strategies, biological control is an environmentally safe and sustainable alternative to chemical control. In this study, we isolated and screened bacteria for antifungal activity against the basal rot pathogen F. oxysporum. Isolates 23-045, 23-046, 23-052, 23-055, and 23-056 significantly inhibited F. oxysporum mycelial growth and conidial germination. Isolates 23-045, 23-046, 23-052, and 23-056 suppressed the development of Fusarium basal rot in both onion seedlings and bulbs in pot and spray inoculation assays. Isolate 23-055 was effective in onion seedlings but exhibited weak inhibitory effect on onion bulbs. Based on analyses of the 16S rRNA and rpoB gene sequences together with morphological analysis, isolates 23-045, 23-046, 23-052, and 23-055 were identified as Bacillus thuringiensis, and isolate 23-056 as Bacillus toyonensis. All five bacterial isolates exhibited cellulolytic, proteolytic, and phosphate-solubilizing activity, which may contribute to their antagonistic activity against onion basal rot disease. Taken together B. thuringiensis 23-045, 23-046, 23-052, and 23-055 and B. toyonensis 23-056 have potential for the biological control of Fusarium basal rot in onion.

Biological Control of White Rot in Apple Using Bacillus spp. (Bacillus spp.를 이용한 사과 겹무늬썩음병의 생물학적 방제)

  • Ha-Kyoung Lee;Jong-Hwan Shin;Seong-Chan Lee;You-Kyoung Han
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.390-398
    • /
    • 2023
  • Apple white rot, caused by Botryosphaeria dothidea, is one of the important diseases in Korea. B. dothidea can cause pre- and postharvest decay on apple fruit as well as canker and dieback of apple trees. In this study, we isolated bacteria from the trunk of apple trees and tested their antagonistic activity against B. dothidea. Five bacterial isolates (23-168, 23-169, 23-170, 23-172, and 23-173) were selected that were most effective at inhibiting the mycelial growth of the pathogens. The isolate 23-172 was identified as Bacillus amyloliquefaciens and four isolates 23-168, 23-169, 23-170, and 23-173 were identified as Bacillus velezensis by RNA polymerase beta subunit (rpoB) and DNA gyraseA subunit (gyrA) gene sequencing. All isolates showed strong antagonistic activity against B. dothidiea as well as Colletotrichum fructicola and Diaporthe eres. All isolates exhibited cellulolytic, proteolytic and phosphate solubilizing activities. In particular, two isolates 23-168, 23-169 were shown to significantly reduce the size of white rot lesions in pretreated apple fruits. These results will provide the basis for the development of a fungicide alternative for the control of white rot of apple.