• Title/Summary/Keyword: Phosphate stress

Search Result 199, Processing Time 0.036 seconds

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

The Effects of Drought Stress on Inorganic Compound and Growth of Potato Plant (건조스트레스가 감자 식물체 무기성분 및 생육에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Cho, Jihong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.241-248
    • /
    • 2017
  • Yield of potato is largely influenced by drought stress. This study was conducted in Gangneung and Cheongju during the spring cropping of potato. Potatoes in the Gangneung area were affected by drought but there was no damage due to drought in Cheongju. During the early-growth stage, the contents of inorganic components like available phosphate and growth characteristics of the potato leaf in Cheongju were significantly higher than those in Gangneung but there was no difference after the flowering stage. It was considered that the potato plants cultivated in Cheongju could vigorously grow than that of Gangneung under drought stress. In addition, the content of calcium (Ca), which is a secondary messenger related to aging, was found to be higher in potato plants grown in Cheongju than in Gangneung and accumulated more quickly in potato plants of Cheongju. Because magnesium (Mg) was also found to be higher in potato plants from Gangneung by a wide margin, this phenomenon was thought be related with drought stress. The amounts of all inorganic components absorbed from soil were higher in Cheongju than in Gangneung, showing a relatively higher plant biomass in Cheongju. Correlations of development indexes related to leaf showed less or no relation in Gangneung. According to yield characteristics of the harvest stage, although yield was greatly reduced under drought stress condition, the rate of commercial yield was not significantly affected under the drought stress condition. Consequently, it was considered that these responses to drought stress could be utilized to stabilize potato production under the stressful conditions associated with abnormal climate.

Proteome Characterization of Sorghum (Sorghum bicolor L.) at Vegetative Stage under Waterlogging Stress (토양 과습 조건하에서 수수 잎의 단백질 양상)

  • Yun, Min Heon;Jeong, Hae-Ryong;Yoo, Jang-Hwan;Roy, Swapan Kumar;Kwon, Soo-Jeong;Kim, Joo-Ho;Chun, Hyen Chung;Jung, Ki Yuol;Cho, Seong-Woo;Woo, Sun-Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.2
    • /
    • pp.124-135
    • /
    • 2018
  • The study was performed to explore the molecular changes in the vegetative stage (3-and 5-leaf) of sorghum under waterlogging stress. A total of 74 differentially expressed protein spots were analyzed using LTQ-FT-ICR MS. Among them, 12 proteins were up-regulated and 3 proteins were down-regulated. Mass spectrometry (MS) results showed that about 50% of the proteins involved in various metabolic processes. The level of protein expression of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase related to carbohydrate metabolic process increased in both 3 and 5-leaf stage under waterlogging stress. These proteins are known to function as antistress agents against waterlogging stress. The expression of oxygen-evolving enhancer protein 1 protein related to photosynthesis was slightly increased in the treated group than in the control group, however the expression level was increased in the 5-leaf stage compared to the 3-leaf stage. Probable phospholipid hydroperoxide glutathione peroxidase protein and superoxide dismutase protein related to response to oxidative stress showed the highest expression level in 5-leaf stage treatment. This suggests that the production of reactive oxygen species by the waterlogging stress was the most abundant in the 5-leaf treatment group, and the expression of the antioxidant defense protein was increased.

Overexpression of Shinorhizobium meliloti Hemoprotein in Streptomyces lividans to Enhance Secondary Metabolite Production

  • Kim, Yoon-Jung;Sa, Soon-Ok;Chang, Yong-Keun;Hong, Soon-Kwang;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2066-2070
    • /
    • 2007
  • It was found that Shinorhizobium meliloti hemoprotein (SM) was more effective than Vitreoscilla hemoglobin (Vhb) in promoting secondary metabolites production when overexpressed in Streptomyces lividans TK24. The transformant with sm (sm-transformant) produced 2.7-times and 3-times larger amounts of actinorhodin than the vhb-transformant in solid culture and flask culture, respectively. In both solid and flask cultures, a larger amount of undecylprodigiocin was produced by the sm-transformant. It is considered that the overexpression of SM especially has activated the pentose phosphate pathway through oxidative stress, as evidenced by an increased NADPH production observed, and that it has promoted secondary metabolites biosynthesis.

Phosphagen Kinases of Parasites: Unexplored Chemotherapeutic Targets

  • Jarilla, Blanca R.;Agatsuma, Takeshi
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.4
    • /
    • pp.281-284
    • /
    • 2010
  • Due to the possible emergence of resistance and safety concerns on certain treatments, development of new drugs against parasites is essential for the effective control and subsequent eradication of parasitic infections. Several drug targets have been identified which are either genes or proteins essential for the parasite survival and distinct from the hosts. These include the phosphagen kinases (PKs) which are enzymes that playa key role in maintenance of homeostasis in cells exhibiting high or variable rates of energy turnover by catalizing the reversible transfer of a phosphate between ATP and naturally occurring guanidine compounds. PKs have been identified in a number of important human and animal parasites and were also shown to be significant in survival and adaptation to stress conditions. The potential of parasite PKs as novel chemotherapeutic targets remains to be explored.

Sphingolipids and Antimicrobial Peptides: Function and Roles in Atopic Dermatitis

  • Park, Kyungho;Lee, Sinhee;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.251-257
    • /
    • 2013
  • Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin.

Combining In Silico Mapping and Arraying: an Approach to Identifying Common Candidate Genes for Submergence Tolerance and Resistance to Bacterial Leaf Blight in Rice

  • Kottapalli, Kameswara Rao;Satoh, Kouji;Rakwal, Randeep;Shibato, Junko;Doi, Koji;Nagata, Toshifumi;Kikuchi, Shoshi
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.394-408
    • /
    • 2007
  • Several genes/QTLs governing resistance/tolerance to abiotic and biotic stresses have been reported and mapped in rice. A QTL for submergence tolerance was found to be co-located with a major QTL for broad-spectrum bacterial leaf blight (bs-blb) resistance on the long arm of chromosome 5 in indica cultivars FR13A and IET8585. Using the Nipponbare (japonica) and 93-11 (indica) genome sequences, we identified, in silico, candidate genes in the chromosomal region [Kottapalli et al. (2006)]. Transcriptional profiling of FR13A and IET8585 using a rice 22K oligo array validated the above findings. Based on in silico analysis and arraying we observed that both cultivars respond to the above stresses through a common signaling system involving protein kinases, adenosine mono phosphate kinase, leucine rich repeat, PDZ/DHR/GLGF, and response regulator receiver protein. The combined approaches suggest that transcription factor EREBP on long arm of chromosome 5 regulates both submergence tolerance and blb resistance. Pyruvate decarboxylase and alcohol dehydrogenase, co-located in the same region, are candidate downstream genes for submergence tolerance at the seedling stage, and t-snare for bs-blb resistance. We also detected up-regulation of novel defense/stress-related genes including those encoding fumaryl aceto acetate (FAA) hydrolase, scramblase, and galactose oxidase, in response to the imposed stresses.

Rheological Properties of Gelatinized Potato Starch (겔라틴화(化)된 감자 전분(澱粉)의 리올로지 특성(特性))

  • Chang, Young Il;Chang, Kyu Seob;Park, Young Duck
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 1991
  • Rheological properties of gelatinized potato starch were investigated with Brookfield wide-gap viscometer at various conditions. The gelatinized potato starch at 3-7% showed a pseudoplastic behavior with yield stress, and presented thixotropic properties with time-dependent structural decays. The consistency index and yield stress of gelatinized starch were proportional to starch concentration but inversely proportional to measurement temperature, and the flow behavior index did not show constant relationship. The consistency index and yield stress of the gelatinized starch on addition of phosphate decreased as the flow behavior index increased. The values of activation energy at initial and equilibrium were 1.52 kcal/g.mole and 127 kcal/g.mole, respectively.

  • PDF

Prediction of Hemolysis in Intra-Cardiac Axial Flow Blood Pumps for Optimization of the Impellers (심장 내 이식형 축류 혈액펌프의 임펠러 최적화를 위한 용혈량 예측)

  • Kim, Dong-Uk;Mitamura, Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.431-437
    • /
    • 2002
  • Low hemolysis is one of the key factors in the production of successful rotary blood pumps. It is, however, difficult to identify the areas where hemolysis occurs. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer Fluid dynamics in five different axial flow pumps was analyzed 3-dimensionally using CFD software. The impeller was rotated at a speed which supplied a flow of 5L/min at a pressure difference of 100mmHg. Changes in the turbulent kinetic energy along streamlines through the pumps were computed. Reynolds' shear stress( (equation omitted) ) was calculated using the turbulent kinetic energy. Hemolysis was evaluated based on Reynolds'shear stress and its exposure time(t) : dHb/Hb=3.62$\times$10$^{-5}$ $t^{0.785}$$\tau$$^{2.416}$ . Hemolysis of the pumps was measured in vitro using fresh bovine blood to which citrate phosphate dextrose was added to prevent clotting. A pump flow of 5L/min was maintained at a pressure difference of 100mmHg for 3h. The normalized index of hemolysis(NIH) as measured. Reynolds' shear stress was high behind the impellers. The measured NIH and the calculated hemolysis(dHb/Hb) shoed a good correlation; NIH=0.0003(dHb/Hb) (r=0.90, n=6) in the range of NIH between 0.003 and 1.1. CFD analysis can predict the in vitro results of hemolysis as well as the areas where hemolysis occurs.ysis occurs.