• 제목/요약/키워드: Phosphate ion

검색결과 350건 처리시간 0.021초

Development of Ion-Selective Electrodes for Agriculture

  • Yang-Rae Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.153-153
    • /
    • 2022
  • There is a growing need to develop ion sensors for agriculture. As a result, several technologies have been developed, such as colorimetry, spectrophotometry, and ion-selective electrode (ISE). Among them, ISE has some advantages compared to others. First, it does not require pre-treatment processes and expensive equipment. Second, it is possible for the portable detection system by introducing small-sized electrodes. Finally, real-time and multiple detections of several ions are pursued. It is well-known that N, P, and K nutrients are critical for crop growth. With the development of agriculture techniques, the importance of soil nutrient analysis has attracted much attention for cost-effective and eco-friendly agriculture. Among several issues, minimizing the use of fertilizers is significant through quantitative analysis of soil nutrients. As a result, it is highly important to analyze certain nutrients, such as N (ammonium ion, nitrate ion, nitrite ion), P (dihydrogen phosphate ion, monohydrogen phosphate ion), and K (potassium ion). Therefore, developing sensors for accurate analysis of soil nutrients is highly desired. n this study, several ISEs have been fabricated to detect N, P, and K. Their performance has been intensively studied, such as sensitivity, selectivity coefficient, and concentration range, and compared with commercialized ISEs. In addition, preliminary tests on the in-situ N, P, and K monitoring have been conducted inside the soil.

  • PDF

중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가 (Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils)

  • 최지연;신원식
    • 한국환경과학회지
    • /
    • 제26권8호
    • /
    • pp.955-966
    • /
    • 2017
  • Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

Phosphate 유리에 첨가된 Rhodium 이온의 에너지 준위 (Energy Levels of Rhodium ions in Phosphate Glasses)

  • 권택용
    • 한국광학회지
    • /
    • 제4권2호
    • /
    • pp.220-225
    • /
    • 1993
  • 이 연구에서는 4d 전이원소인 rhodium 이온을 첨가한 유리의 광학적 특성을 조사하였다. Rhodium이 첨가된 phosphate유리의 광흡수, photoluminescence, 수명시간 등을 측정하고 여기에 Sugano-Tanabe의 strong-field scheme을 적용하여 해석한 결과 phosphate유리 속에서 rhodium은 R$h^{2+}$ 상태로 존재하며 이때 10Dq는 약$20,000cm^1$였다. $^2 E{\rightarrow}^2 T_1$$^2 E{\rightarrow}^2 T_2$ 천이에 의한 흡수대는 460nm에 중첩되어 나타나고, $^2 T_1{\rightarrow}^2 E$$^2 T_1{\rightarrow}^2 E$천이에 의한 luminescence대는 각각 650nm와 580nm에 나타났다.

  • PDF

Tobermolite를 이용한 폐수내 인산염제거 (Phosphate Removal in Wastewater by Tobermolite)

  • 임봉수;김대현;이태우
    • 상하수도학회지
    • /
    • 제27권6호
    • /
    • pp.751-759
    • /
    • 2013
  • This study is carried out to get the basic design parameters for phospate removal facilites from wastewater by Tobermolite. The phosphate removal by the apatite formation on the surface was affected by several important factors, temperature, ions present in wastewater stream, contact time, recirculation rate, and etc. In case of the temperature, with the increase of temperature, the apatite formation was accelerated. When temperature increased from $15^{\circ}C$ to $35^{\circ}C$, removal efficiency of phosphate increased from 83 % to 93 %. An increase of calcium and fluoride ion content increase the apatite formation, however, bicarbonate and magnesium ion inhibited the crystallization of apatite. As expected, when the recirculation rate was increased from 1 Q to 3 Q, at EBCT (Empty Bed Contact Time) 60min enhanced removal efficiency was observed. The more the recirculation rate increased, the more the removal efficiency increased. According to the results of column experiment using an actual wastewater with low and high phosphate concentration (5 mg/L and 50 mg/L-P), the removal efficiency was 77 % at EBCT of 45 min, and 80 % at 60 min. It was suggested that optimum EBCT was 45 min.

중금속(重金屬) 이온의 토양(土壤) 흡착에 관한 연구 -(제1보) CEC 및 유기탄소 함량이 낮은 광물토양에의 Cd, Cu, Ni, 및 Zn의 흡착과 이에 미치는 pH 및 인산의 효과- (Studies on Heavy Metal Ion Adsorption by Soils. -(Part 1) PH and phosphate effects on the adsorption of Cd, Cu, Ni and Zn by mineral soils with low CEC and low organic carbon content)

  • 김명종;해리.엘.마토
    • Applied Biological Chemistry
    • /
    • 제20권3호
    • /
    • pp.300-309
    • /
    • 1977
  • The information related to the heavy metal pollution in the environment was obtained from studies on the effects of pH, phosphate and soil properties on the adsorption of metal ions (Cd, Cu, Ni, and Zn) by soils. Three soil materials; soil 1 with low CEC (8.2 me/100g) and low organic carbon content (0.34%); soil 2 with high CEC (36.4 me/100g) and low organic carbon content (1.8%) and soil 3 with high CEC (49.9 me/100g) and high organic carbon content (14.7%) were used. Soils were adjusted to several pH's and equilibrated with metal ion mixtures of 4 different concentrations, each having equal equivalents of each metal ion (0.63, 1.88, 3.12 and 4.38 micromoles per one gram soil with and without 10 micromoles of phosphate per one gram soil). Reported here are the results of the equilibrium study on soil I. The rest of the results on soil 2 and soil 3 will be repoted subsequeutly. Generally higher metal ion concentration solution resulted in higher final metal ion concentrations in the equilibrated solution and phosphate had minimal effect except it tended to enhance removal of cadmium and zinc from equilibrated solutions while it tended to decrease the removal of copper and nickel. In soil 1, percentages of added metal ions removed at pH 5.10 were; Cu 97, Ni 69, Cd 63, and Zn 55, while increasing pH to 6.40, they were increased to Cu 90.9, Zn 99, Ni 96, and Cd 92 per As initial metal ion concentration increased, final metal ion concentrations in the equilibrated solution showed a relationship with pH of the system as they fit to the equation $p[M^{++}]=a$ pH+b where $p[M^{++}]=-log$[metal ion concentration in Mol/liter]. The magnitude of pH and soil effects were reflected in slope (a) of the equation, and were different among metal ions and soils. Slopes (a) for metal ions in the aqueous system are all 2. In soil 1 they were; Zn 1.23, Cu 0.99, Ni 0.69 and Cd 0.59 at highest concentration. The adsorption of Cd, Ni, and Zn in soil 1 could be represented by the Iangmuir isotherm. However, construction of the Iangmuir isotherm required the correction for pH differences.

  • PDF

하수고도처리에서 층상이중수화물을 이용한 인산 이온교환 특성 (Characteristics of Ion Exchange of Phosphate using Layered Double Hydroxides in Advanced Wastewater Treatment)

  • 송지현;신승규;이상협;박기영
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.991-995
    • /
    • 2006
  • The layered double hydroxide with the insertion of chloride ions (LDH-Cl), which was synthesized by the co-precipitation method, was applied to investigate the fundamental aspects of the absorptive agent for phosphate removal from wastewater. The adsorption capacity was best described by the Langmuir-FreundIich isotherm, and the estimated isotherm parameters indicate that the LDH-CI capacity for the phosphate removal is much higher than that observed using a natural adsorbent material such iron oxide tailing. The kinetic experiment also showed that the LDH-Cl adsorption reaction rapidly at the adsorptive rate of 0.55 mg-P/g-LDH/min, implying that this adsorbent can be of use in the full-scale applications. The pH had a minimal effect on the LDH adsorption capacity in the range of 5 to 11, although the capacity dropped at the low pHs because of the change in LDH surface properties. Furthermore, other anions such as $Cl^-$ and $NO_3{^-}$ commonly found in the wastewater streams insignificantly affected the phosphate removal efficiencies, while $HCO_3{^-}$ ions had a negative effect on the LDH adsorption capacity due to its high selectivity. The phosphate removal experiment using the actual secondary effluent from a wastewater treatment plant showed the similar decrease in adsorption capacity, indicating that the bicarbonate ions in the wastewater were competing with phosphate for the adsorptive site in the surface of the LDH-Cl. Overall, the synthetic adsorbent material, LDH-Cl, can be a feasible alternative over other conventional chemical agents, since the LDH-Cl exhibits the high phosphate removal capacity with the low sensitivity to other environmental conditions.

인산염 및 불소폐수 처리제로서의 희토류 화합물 적용에 관한 연구 (Application of Rare Earth Compounds for the Treatment of Phosphate and Fluoride in Wastewater)

  • 김진화;신성혜;송혜원;김동수;우상모;권영식
    • 대한환경공학회지
    • /
    • 제22권6호
    • /
    • pp.1127-1137
    • /
    • 2000
  • 인산염 폐수와 불소폐수를 대상으로 각각 $La^{3+}$를 주성분으로 하는 희토수처리제와 조염화희토화합물로 제조된 수처리제를 적용하는 방안을 검토하였다. $La^{3+}$의 인산염 농도 대비 투입몰비에 따른 인산염의 제거양상을 조사한 결과, 투입몰비 0.25에서 약 50% 정도의 인산염이, 그리고 투입몰비 0.5 에서 대부분의 인산염이 제거되는 결과를 보였다. 희토수처리제에 의한 인산염 인의 제거반응은 평형에 신속히 도달하였으며, 온도증가에 따라 인산염의 제거율이 다소 감소하는 경향이 관찰되어 발열반응의 특성을 나타내었다. 희토-인산 결합체의 제타전위는 pH 5.5를 경계로 그 이하에서는 양의 값을, 그리고 그 이상에서는 음의 값을 가지는 것으로 파악되었으며 pH에 따른 제타전위 절대치의 증감과 탁도의 증감은 유사한 경향으로 변화하였다. 불소폐수에 대한 조염화희토 수처리제의 적용에 있어서는 수처리제의 투입량 중가에 따른 잔류불소 농도의 감소 및 탁도와 생생슬러지량의 증대현상이 관찰되었으며, 수처리제의 투입량이 고정된 상태에서 응집제량의 변화에 따른 불소처리효과에 대한 검토에서는 응집제의 주입량이 증가됨에 따라 잔류불소량 및 탁도는 감소하고 슬러지 발생량은 증가하는 경향이 파악되었다.

  • PDF

지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성 (Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure)

  • 이상협;이병천;이관용;최용수;박기영
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.637-642
    • /
    • 2005
  • The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

리튬이온전지용 난연성 첨가제(TCP, TFPP)의 전기화학적 특성 (Electrochemical Performance of Tricredyl Phosphate and Trispentafluorophenly Phosphine as Flame Retardant Additives for Lithium-ion Batteries)

  • 안세영;김기택;김현수;남상용
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.756-760
    • /
    • 2007
  • Flame retardant(FR) properties were investigated with tricredyl phosphate(TCP) and tris(pentafluorophenyl)phosphine(TFPP) as additives for lithium-ion batteries. Thermal stability was improved with additives in $Li/LiNi\frac{1}{3}Mn\frac{1}{3}Co\frac{1}{3}O_2$ cells comparing to non-additive electrolytes. Oxygen evolution reaction of the cathode material was delayed to up $55^{\circ}C$, from $275^{\circ}C\;to\;330^{\circ}C$. Electrolytes with the 1 wt.% additives provided good FR properties while the resonable battery performance is maintained.