• Title/Summary/Keyword: Phosphate content

Search Result 825, Processing Time 0.029 seconds

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage II. Influence of Cool Water Irrigation on the Inorganic Element Content of Leaf Blades, Rachis Branches and Chaff of Rice (생식생장기 냉수온이 벼의 Source와 Sink관련형질 및 양분흡수에 미치는 연구 II. 냉수관계가 벼의 엽신, 지경, 영각의 무기성분 조성에 미치는 영향)

  • 최수일;황창주;이중호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • This study was investigated about influence of different cold water irrigation on the nutrient uptake of leaf blade, rachis branches and chaff. Longer duration of cold water irrigation increased total nitrogen content in leaf blade, branches and chaff but decreased the content of phosphate, potassium and silicate. The highest content of total nitrogen and phosphate showed at heading stage, that of potassium in leafblades and branches at heading but in chaff at maturing stage, and that of silicate at maturing stage. Inorganic element content in branches was similar with that in chaff in general. The excessive uptake of nitrogen by cold water irrigation caused decrease in the uptake phosphate, potassium and silicate showing clear nutrient disorder in the blades and chaff. High total nitrogen and low silicate in rice plants seemed to lead to degeneration of branches and spikelets, and to spikelet sterility. Degeneration and sterility appeared to be closely related to nutrient status of branches.

  • PDF

Glutamic-oxaloacetic transaminase 1 regulates adipocyte differentiation by altering nicotinamide adenine dinucleotide phosphate content

  • Yang, Yang;Cheng, Zhimin;Zhang, Wanfeng;Hei, Wei;Lu, Chang;Cai, Chunbo;Zhao, Yan;Gao, Pengfei;Guo, Xiaohong;Cao, Guoqing;Li, Bugao
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.155-165
    • /
    • 2022
  • Objective: This study was performed to examine whether the porcine glutamic-oxaloacetic transaminase 1 (GOT1) gene has important functions in regulating adipocyte differentiation. Methods: Porcine GOT1 knockout and overexpression vectors were constructed and transfected into the mouse adipogenic 3T3-L1 cells. Lipid droplets levels were measured after 8 days of differentiation. The mechanisms through which GOT1 participated in lipid deposition were examined by measuring the expression of malate dehydrogenase 1 (MDH1) and malic enzyme (ME1) and the cellular nicotinamide adenine dinucleotide phosphate (NADPH) content. Results: GOT1 knockout significantly decreased lipid deposition in the 3T3-L1 cells (p<0.01), whereas GOT1 overexpression significantly increased lipid accumulation (p<0.01). At the same time, GOT1 knockout significantly decreased the NADPH content and the expression of MDH1 and ME1 in the 3T3-L1 cells. Overexpression of GOT1 significantly increased the NADPH content and the expression of MDH1 and ME1, suggesting that GOT1 regulated adipocyte differentiation by altering the NADPH content. Conclusion: The results preliminarily revealed the effector mechanisms of GOT1 in regulating adipose differentiation. Thus, a theoretical basis is provided for improving the quality of pork and studies on diseases associated with lipid metabolism.

Microstructure and Biocompatibility of Porous BCP(HA/β-TCP) Biomaterials Consolidated by SPS Using Space Holder

  • Woo, Kee-Do;Kwak, Seung-Mi;Lee, Tack;Oh, Seong-Tak;Woo, Jeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.449-453
    • /
    • 2016
  • $HA(hydroxyapatite)/{\beta}-TCP$ (tricalcium phosphate) biomaterial (BCP; biphasic calcium phosphate) is widely used as bone cement or scaffolds material due to its superior biocompatibility. Furthermore, $NH_4HCO_3$ as a space holder (SH) has been used to evaluate feasibility assessment of porous structured BCP as bone scaffolds. In this study, using a spark plasma sintering (SPS) process at 393K and 1373K under 20MPa load, porous $HA/{\beta}-TCP$ biomaterials were successfully fabricated using $HA/{\beta}-TCP$ powders with 10~30 wt% SH, TiH2 as a foaming agent, and MgO powder as a binder. The effect of SH content on the pore size and distribution of the BCP biomaterial was observed by scanning electron microscopy (SEM) and a microfocus X-ray computer tomography system (SMX-225CT). The microstructure observations revealed that the volume fraction of the pores increased with increasing SH content and that rough pores were successfully fabricated by adding SH. Accordingly, the cell viabilities of BCP biomaterials were improved with increasing SH content. And, good biological properties were shown after assessment using Hanks balanced salt solution (HBSS).

Effects of Lime and Phosphate Applications on Growth and Nitrogen Fixation of Alfalfa in Acid Soil (산성토양에서 석회와 인산시용이 Alfalfa의 생장 및 질소고정에 미치는 영향)

  • Jeon, U-Bok;Choe, Gi-Chun;Kim, Jeong-Cheol;Kim, Dong-Hu;Kwang Hyun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.4
    • /
    • pp.274-277
    • /
    • 1993
  • We investigated the effects of applications of various levels of lime(0, 250, 500 and 1,000 kg/10a) and phosphate (0, 17 and 34 kg/10a) on growth and nitrogen fixation of alfalfa (Medicago sativa L.). Effects of lime and phosphate applications were significantly different on dry matter (DM) weight of each part and on acetylene reduction activity (ARA) of alfalfa at 9 weeks alter sowing (p<.05). The effect of lime on DM of shoot and root was not significantly different at 14 weeks after sowing (early bloom stage), but that of phosphate on DM was significantly improved as increasing of phosphate levels (p<.01). The effects of lime and phosphate on ARA were significantly increased (p<.05). Application of lime and phosphate decreased total nitrogen (TN) content of each part of alfalfa at 9 weeks after sowing (p<.05). The effects of lime application on TN was higher but that of phosphate application on TN was lower than no application of lime or phosphate at 14 weeks after sowing (p<.05).

  • PDF

Quality Enhancement of Frozen Chicken Meat Marinated with Phosphate Alternatives

  • Mahabbat Ali;Shine Htet ,Aung;Edirisinghe Dewage Nalaka Sandun Abeyrathne;Ji-Young Park;Jong Hyun Jung;Aera Jang;Jong Youn Jeong;Ki-Chang Nam
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.245-268
    • /
    • 2023
  • The effects of phosphate alternatives on meat quality in marinated chicken were investigated with the application of chilling and freezing. Breast muscles were injected with solution of the green weight containing 1.5% NaCl and 2% sodium tripolyphosphate (STPP) or phosphate alternatives. Treatment variables consisted of no phosphate [control (-)], 0.3% sodium tripolyphosphate [control (+)], 0.3% prune juice (PJ), 0.3% oyster shell, 0.3% nano-oyster shell, and 0.3% yeast and lemon extract (YLE) powder. One-third of the meat samples were stored at 4℃ for 1 d, and the rest of the meats were kept at -18℃ for 7 d. In chilled meat, a lower drip loss was noted for control (+) and YLE, whereas higher cooking yield in YLE compared to all tested groups. Compared with control (+), the other treatments except PJ showed higher pH, water holding capacity, moisture content, lower thawing and cooking loss, and shear force. Natural phosphate alternatives except for PJ, improved the CIE L* compared to control (-), and upregulated total protein solubility. However, phosphate alternatives showed similar or higher oxidative stability and impedance measurement compared to control (+), and an extensive effect on myofibrillar fragmentation index. A limited effect was observed for C*, h°, and free amino acids in treated meat. Eventually, the texture profile attributes in cooked of phosphate alternatives improved except for PJ. The results indicate the high potential use of natural additives could be promising and effective methods for replacing synthetic phosphate in chilled and frozen chicken with quality enhancement.

The Effects of Different Particle Sizes of Fused Phosphate on Paddy Rice (수도(水滔)에 대한 용성인비(熔成燐肥)의 입도별(粒度別) 비효에 관한 연구(硏究))

  • Uhm, Dae-Ick;So, Jae-Don;Chang, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.245-256
    • /
    • 1978
  • The effects of different particle size distribution of fused phosphate on the changes of phosphorus content in soil and plant, growth and yield of paddy rice were investigated through pot and field experiments. The following results were obtained. 1. Negative correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was larger than 28 mesh, and 65 to 150 mesh, and highly significant correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was 28 to 48 mesh. But no significant correlation was found betweeen unhulled rice yield and the composition of fused phosphate whose particle size was 48 to 65 mesh. Thus the composition of 56% of 28 to 48 mesh particles and 44% of 48 to 65 mesh particles would give the best effect. 2. In the soil of the Jeonbug series rice plant in the plots treated with fine single textured fused phosphate showed poor early growth, i.e. poor tillering and short plant height. But at harvesting stage it showed rather increased number of tillers and higher plant height. Of the composite fused phosphate the more particles of 28 to 48 mesh it had, the better growth it showed. In the soil of the Yesan series rice plant in the treated plots showed much better tillering and higher plant height in contrast with that in the control plots. Of the single textured fused phosphate the finer particles showed better growth, while of the composite fused phosphate the more particles finer than 48 mesh it had, the poorer the tillering. 3. The content of available phosphorus in the soil tended to increase as the particles of both single textured and composite phosphate became finer. The soil phosphorus content decreased as the content of phosphorus absorbed by rice plant increased at each stage of growth, and the amount of soil phophorus decreased became larger as the the particles were finer. The amount of available phosphorus in the treated soils was larger in the soil of the Yesan series than in the soil of the Jeonbug series which was a long cultivated soil and contained relatively high phosphorus. 4. In the single textured fused phosphate the amount of phosphorus absorbed by rice plant tended to increase as the particles were finer, and great difference was found at heading stage, but at harvesting stage little difference was found for all the plots. In the field experiment in the soil of the Jeonbug series more phosphorus was absorbed by rice plant in the plots treated with the composite fused phosphate of higher content of 28 to 48 mesh particles. In the pot experiment the amount of phosphorus absorbed by rice plant was highest in the plots treated with the composite fused phosphate of 53.35% of particles larger than 48 mesh and 46.6% of particles smaller than 48 mesh. In the pot experiment in the Yesan series the amount of absorbed phophorus was highest in the plots treated with the fused phosphate of 47.75% of particles larger than 48 mesh and 50. 216% of particles smaller than 48 mesh. 5. A reverse relationship was found between the absorbed phosphorus and silica. In the pot experiment in the soils of both the Jeonbug and Yesan series the amount of phosphorus absorbed by rice plant increased as the particles were finer, while the amount of absorbed silica tended to decrease.

  • PDF

Proton Conductivity of Niobium Phosphate Glass Thin Films

  • Kim, Dae Ho;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.308-314
    • /
    • 2018
  • Among the fuel cell electrolyte candidates in the intermediate temperature range, glass materials show stable physical properties and are also expected to have higher ion conductivity than crystalline materials. In particular, phosphate glass has a high mobility of protons since such a structure maintains a hydrogen bond network that leads to high proton conductivity. Recently, defects like volatilization of phosphorus and destruction of the bonding structure have remarkably improved with introduction of cations, such as Zr4+ and Nb5+, into phosphate. In particular, niobium has proton conductivity on the surface because of higher surface acidity. It can also retain phosphorus content during heat treatment and improve chemical stability by bonding with phosphorus. In this study, we fabricate niobium phosphate glass thin films through sol-gel processing, and we report the chemical stability and electrical properties. The existence of the hydroxyl group in the phosphate is confirmed and found to be preserved at the intermediate temperature region of $150-450^{\circ}C$.

Effects of Calcium Powder Mixtures and Binding Ingredients as Substitutes for Synthetic Phosphate on the Quality Properties of Ground Pork Products

  • Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1179-1188
    • /
    • 2018
  • This study aimed to investigate the combined effect of using natural calcium mixtures and various binding ingredients as replacers for synthetic phosphate in ground pork products. We performed seven treatments: control (0.3% phosphate blend), treatment 1 (0.5% natural calcium mixtures [NCM, which comprised 0.2% oyster shell calcium and 0.3% egg shell calcium powder] and 0.25% egg white powder), treatment 2 (0.5% NCM and 0.25% whey protein concentrate), treatment 3 (0.5% NCM and 0.25% concentrated soybean protein), treatment 4 (0.5% NCM and 0.25% isolated soybean protein), treatment 5 (0.5% NCM and 0.25% carrageenan), and treatment 6 (0.5% NCM and 0.25% collagen powder). All the treatment mixtures had higher pH and lower cooking loss than the control, which was treated with phosphate. We found that NCM and binding ingredients had no negative effects on the moisture content, lightness, and yellowness of the cooked ground pork products. Treatments 3 and 4 showed significantly lower CIE $a^*$ values than the control. Treatments 2 and 6 improved the textural properties of the products. In conclusion, the combination of NCM with whey protein concentrate or collagen powder could be suitable for producing phosphate-free meat products.

Solid State Sintering of Calcium Phosphate Ceramic Composites and Their Cellular Response

  • Cho, Yeong-Cheol;Kong, Young-Min;Riu, Doh-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.691-695
    • /
    • 2012
  • Calcium phosphate ceramic composites, consisting of hydroxyapatite(HA) and tricalcium phosphate (TCP), were fabricated by solid state sintering in order to investigate the effect of their initial compositions on microstructural evolutions and biocompatibility. All the sintered calcium phosphate ceramics exhibited almost full densification, while the grain growth of the composites increased with an increasing TCP content in the green body. The TCP phase transformed into a Ca-deficient HA phase during sintering via the diffusion of calcium ions from the HA phase into the TCP phase. The phases formed in the composites significantly affected the biocompatibility of the composites. The HA-matrix ceramic composites with TCP had a better cellular response than the pure HA ceramics, presumably due to the newly formed Ca-deficient HA.

Influence of Compost Recycling and Magnesium Supplement on Physical and Chemical Traits of Animal Manure Compost

  • Lee, Jin-Eui;Kwag, Jung-Hoon;Ra, Chang-Six
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.513-519
    • /
    • 2010
  • A series of experiments were performed to study the influence of the following parameters on the physical traits and composition of swine manure compost: (1) addition of magnesium (Mg) at a molar ratio of 1.2 with respect to $PO_4$, and (2) reutilization of compost containing $MgNH_4PO_4{\cdot}6H_2O$ (magnesium ammonium phosphate, MAP). Three independent batch tests were conducted for replication: batch test I-control (C) and Mg added (T), batch test II-C, T and compost recycle ($T_{R1}$), and batch test III-C, T and compost recycle ($T_{R2}$). Magnesium addition and compost reutilization had no adverse effect on the degradation of organic matter. Reuse of the compost, however, had a clear effect on the total nitrogen (TN) and total phosphorus (TP) contents in the final compost. Repeated compost reutilization as a bulking material was resulted in composts rich in N and P. Upon adding the Mg supplement to the composting materials, the ortho-phosphate (OP) to TP ratio decreased due to the MAP crystallization reaction. The decrease in the OP/TP ratio and the increase in the TP content of the compost indicate that water-soluble phosphate is converted into a slow-release phosphate by the formation of crystals during composting. X-ray diffraction analysis of the irregular shaped crystals in the compost indicated that they are MAP crystals and that the crystallization of MAP begins immediately after the addition of the Mg supplement. The Mg addition to composting materials and the reutilization of compost as a bulking material would be a practical means to conserve nutrient content.