• 제목/요약/키워드: Phosphate Availability

검색결과 73건 처리시간 0.021초

Electrodeposition of Silicon from Fluorosilicic Acid Produced in Iraqi Phosphate Fertilizer Plant

  • Abbar, Ali H.;Kareem, Sameer H.;Alsaady, Fouad A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.168-173
    • /
    • 2011
  • The availability, low toxicity, and high degree of technological development make silicon the most likely material to be used in solar cells, the cost of solar cells depends entirely on cost of high purity silicon production. The present work was conducted to electrodeposite of silicon from $K_2SiF_6$, an inexpensive raw material prepared from fluorosilicic acid ($H_2SiF_6$) produced in Iraqi Fertilizer plants, and using inexpensive graphite material as cathode electrode. The preparation of potassium fluorosilicate was performed at ($60^{\circ}C$) in a three necks flask provided with a stirrer, while the electro deposition was performed at $750^{\circ}C$ in a three-electrodes configuration with melt containing in graphite pot. High purity potassium fluorosilicate (99.25%) was obtained at temperature ($60^{\circ}C$), molar ratio-KCl/$H_2SiF_6$(1.4) and agitation (600 rpm). Spongy compact deposits were obtained for silicon with purity not less than (99.97%) at cathode potential (-0.8 V vs. Pt), $K_2SiF_6$ concentration (14% mole percent) with grain size (130 ${\mu}m$) and level of impurities (Cu, Fe and Ni) less than (0.02%).

Improved Thermal Stability of a Novel Acidophilic Phytase

  • Byung Sam Son;So Hyeong Kim;Hye-Young Sagong;Su Rin Lee;Eun Jung Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1119-1125
    • /
    • 2024
  • Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70℃. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60℃. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80℃ heat treatment without significant loss of or with increased activity.

Nutrition of Calcium and Phosphorus in Poultry Diets (닭에 대한 칼슘과 인의 영양)

  • 한인규;오상집
    • Korean Journal of Poultry Science
    • /
    • 제8권2호
    • /
    • pp.55-68
    • /
    • 1981
  • Calcium and phosphorus are not only indispensable for the bone formation and body fluids equilibrium but also are major components of egg shell. It is nutritionally important, therefore, to investigate the metabolism of calcium and phosphorus and to search for optimum requirement of calcium and phosphorus and the availability of various sources of calcium an4 phosphorus by poultry. An attempt was made to review the nutrition of calcium and phosphorus in poultry diets. 1, Calcium and phosphorus have great interrelationship with vitamin D in their metabolisms. 2. Most of the plant-origin phosphorus are existing in phytic form and it leads to low availability when used in poultry rations, although calcium and phosphorus present in animal-origin or mineral supplements are highly available in general. 3. Calcium and phosphorus requirement from existing information indicated that 1.0% calcium and 0.7% phosphorus for broiler and egg-type chicks, and 3.5% calcium and 0.4% phosphorus for laying hen. 4. It has been recommended that calcium and phosphorus level should be increased when the feed intake was decreased or when the egg Production rate was higher or when the hens are old. 5. Mono-, ci-, tri-, calcium phosphate, calcium carbonate, bone meal, limestone and oyster shell u the most readily available among various sources of calcium phosphorus supplements. Soft rock phosphate, deflourinated phosphate and gypsum are somewhat inferior to the previous ones in bioavailability. 6. The effect of particle size of calcium supplements on egg shell quality and egg production rate is not yet clearly defined but recent works showed that oyster shell is more available when it was coarse and limestone is more available when it was fine in panicle. size. 7. Present data indicated that mixed feeding of oyster shell and limestone is superior to the single feeding of each on laying performance. 8. Significant interaction between phosphorus and sodium was observed, that is, excessive sodium decreased egg production in layer and body weight growth in broiler in the low phosphorus diets but increased them in the high phosphorus diets.

  • PDF

Effects of Silicate Fertilizer on Increasing Phosphorus Availability in Salt Accumulated Soil during Chinese Cabbage Cultivation (염류집적토양에서 규산질 비료가 인산의 유효도 증진에 미치는 영향)

  • Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제39권1호
    • /
    • pp.8-14
    • /
    • 2006
  • High phosphate accumulations in greenhouse soils have been considered as a new agricultural problem in Korea. The effects of silicate on changes in phosphate fractions and on the yield of Chinese cabbage without P fertilization were investigated by pot experiment. For this experiment, P-accumulated soil was selected (Total-P; $2140mg\;kg^{-1}$). Three levels of silicate (0, 2, and $4Mg\;ha^{-1}$) without P fertilization and P fertilizer without silicate application (Si0+NPK) were applied in 1/2000a pots. The same amount of nitrogen and potassium fertilizers were applied to the all pots. The application of $4Mg\;ha^{-1}$ of silicate greatly increased the yield of Chinese cabbage by 25% compared to Si0+NPK treatment. Although there is no significant difference in plant P absorption among all the treatments, the uptake of P in the $4Mg\;ha^{-1}$ silicate application was significantly higher than Si0+NPK treatment due to increase in yield. The content of available $SiO_2$ in soil increased with increasing silicate application rates. The Si concentration of plant showed a positive correlation with available $SiO_2$ contents in soil and the yield of Chinese cabbage. Total P greatly decreased with increasing rates of silicate application, yet the change in available P content was not significant. The Si0+NPK treatment increased the content of Ca-P by 11%, however, which was decreased by 27% in the $4Mg\;ha^{-1}$ silicate application. Therefore, the effect of silicate on reducing total-P was mainly attributed to the change in concentration of Ca-P. Our results suggest that the application of silicate in P-accumulated soils not only increase the crops yield but also reduces phosphate accumulation.

Utilization of Industrial Wastes for Organic Fertilizer Use (유기질비료(有機質肥料) 자원(資源)으로서의 산업폐기물(産業廢棄物))

  • Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제11권3호
    • /
    • pp.195-206
    • /
    • 1979
  • Where the industrial waste is increasing in number of kind and in quantities by the industrialization and population increases, the pollution problem is not only national but grobal question of the day. This paper is trying to invite attentions by the people who are working in both sector-natural sciences and industries in reviewing limited reports and materials. 1. By the chemical evaluation of over 20 industrial waste produced in Korea, potential wastes for commercial fertilizer would be wastes from alcohol fermantation, beer brewery, leather processing, synthetic fiber, and coffee grounds. 2. The composition of city waste is differ from other countries and sludge cake from human feces processing is promising one in the organic matter and phosphate content particularly. However, the content of heavy matals, specific order, and availability of phosphate are the bottle-neck for the development. 3. There is one commercial fertilizer from industrial waste in the market. It is very reasonable in the content of nitrogen and organic matter, and its formulation and responeses on crops. 4. Discussions were also given on the general problems in processing and marketing of fertilizers from industrial waste, however, scientists and industrial owners have to pay more attention on the development of fertilizers from tire industrial wastes because of vital environmental protection view-point.

  • PDF

Role of Blood Flow vs. $O_{2}$ Consumption in Nicotinamide-induced Increase $pO_{2}$ in a Murine Tumor (Nicotinamide에 의한 종양내 산소 분압의 증가에 있어서 혈류 또는 산소 소모의 역할)

  • Lee Intae;Demhartner Thomas J.;Cho Moon-June
    • Radiation Oncology Journal
    • /
    • 제12권1호
    • /
    • pp.17-25
    • /
    • 1994
  • We evaluated the effect of nicotinamide on cellular $O_{2}$ consumption and metabolic status i.e., adenylate phosphates and $NAD^{+}$in-vitro, and changes in blood flow in-vivo, to determine whether changes in cellular metabolism or increased oxygen availability, was responsible for increased tumor oxygenation. Thirty min, pre-incubation of cells with$\∼$4mM (= 500mg/kg) nicotinamide resulted in no change in cellular $O_{2}$ consumption. Similarly neither the adenylate Phosphates nor the cellular $NAD^{+}$levels were altered in the presence of $\∼$4mM nicontinamide. In-vivo, nicotinamide (500mg/kg) increased $O_{2}$ availability as estimated by changes in relative tumor blood flow (RBC flux). The changes in RBC flux measured by the laser Doppler method, were tumor volume dependent and increased from$\∼$35$ \% $ in$\∼$ 150$mm_{3}$tumors to$\∼$~75$ \% $ in$\∼$500$mm^{3}$ tumors. In conclusion, these observations indicate a reduction in local tissue $O_{2}$ consumption is not a mechanism of improved tumor oxygenation by nicotinamide in FSa II murine tumor model. The primary mechanism of increased $pO_{2}$ appears to be an increased local tumor blood flow.

  • PDF

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities

  • Kim, Young-Ok;Yang, Eun-Jin;Kang, Jung-Hoon;Shin, Kyoung-Soon;Chang, Man;Myung, Cheol-Soo
    • Ocean Science Journal
    • /
    • 제42권1호
    • /
    • pp.9-17
    • /
    • 2007
  • The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.

Effects of Environmental Characteristics on the Production of Shellfish in Deukryang Bay, Korea (득량만의 조개류 생산량과 환경요인 관계 분석)

  • Cho, Eun-Seob;Lim, Weol-Ae;Hwang, Jae-Dong;Suh, Young-Sang
    • Journal of Environmental Science International
    • /
    • 제20권10호
    • /
    • pp.1243-1263
    • /
    • 2011
  • This study was carried out to determine marine environments and phytoplankton community in Deukryang Bay during the period of summer in 1987-2010. Water temperature, salinity, pH and dissolved oxygen were shown in much yearly fluctuations. In August, water temperatures in surface and on bottom were the highest, compared with average surface (24.54$^{\circ}C$) and bottom (22.90$^{\circ}C$) water temperature for 18 years in Deukryang Bay. The main reason is assumed to longer duration of sunshine during the period of August. Although the amount of the rainfall in August was the highest, significant impact of marine environment did not show. Most of dissolved inorganic nitrogen and phosphate in Deukryang were lower concentration during summer and N:P ratio also showed below 18 in Redfield. In particular, extreme increasing of N:P ratio in August was occurred by intensive precipitation. Distribution of phytoplankton community was a consistent occurrence for 18 years. The genus of Chaetoceros, Cosinodisucs and Skeletonema were regarded as the represent diatom, whereas the highest occurrence of genus among dinofagellates was Ceratium. It is thought that the relationship between phytoplankton and nutrient has a strong positive signal, although nutrients persist a little concentration and much fluctuations in marine environments were observed. High availability in phytoplankton is contributed to consistently provide the food organism of shellfish. Consequently, recent decreasing production of shellfish and seed are probably associated with higher temperature during the period of summer. However, higher temperature is also occurred ago and after 2000. On the basis of geography, Deukryang Bay had a small mouth and long channel, which is attributed to decreasing genetic diversity. It is assumed that higher temperature and lower genetic diversity have a extreme impact of larvae and shellfish for reproduction in Deukryang. It is necessary to persistently monitor based on water quality and phytoplankton community.

Effects of Heavy Metal Contamination from an Abandoned Mine on Tomato Growth and Root-knot Nematode Development

  • Park, Byeong-Yong;Lee, Jae-Kook;Ro, Hee-Myong;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.266-271
    • /
    • 2011
  • Physicochemical characteristics and heavy metal content of soils located along the drainage way of an abandoned mine at Busan, Korea ($35^{\circ}31'N$, $129^{\circ}22'E$) (contaminated soil; CS) and uncontaminated soils (50-70 m apart from the drainage way) (NS) were examined. Growth of tomato plants (Solanum lycopersicom cv. Rutgers) in CS and NS, development of the root-knot nematode (Meloidogyne incognita) as root-knot gall formation on tomato plants, and non-parasitic nematode populations in soil were also examined. Growth of tomato plants, root-knot gall formation, and non-parasitic nematode populations were significantly reduced in CS with higher As content, lower pH, higher electrical conductivity (EC), and lower available phosphate (av. $P_2O_5$) than in NS. None of the other physicochemical characters examined differed significantly between CS and NS (low and no significance) and were above or below the critical levels detrimental to plant growth and nematode development, suggesting that As may be the primary hazardous heavy metal in CS. The toxicity of As might be enhanced at low pH in CS because exchangeable forms of some heavy metals increase with the decrease of soil pH. The heavy metals, especially As, may have contributed to increasing EC and decreasing av. $P_2O_5$. Therefore, the effects of mine drainage contamination from the abandoned mine were derived primarily from contamination by heavy metals such as As. These may have been enhanced in toxicity (solubility) by the lowered pH, increased soil salinity (EC) and decreased av. $P_2O_5$. Our results suggest synergistic adverse effects on the plant and the nematode by decreasing osmotic potential and nutrient availability.