• Title/Summary/Keyword: Phenylglycine methyl ester

Search Result 7, Processing Time 0.021 seconds

pH-Controlled Synthesis of Cephalexin by a Purified Acetobacter turbidans Ampicillin Acylase

  • Nam, Doo-Hyun;Ryu, Yeon-Woo;Dewey D.Y Ryu
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.329-332
    • /
    • 2001
  • It has been known that, in enzymatic synthesis of cephalexin, the conversion yield was reduced by high loading of ampicillin acylase. In order to elucidate this phenomena, pH-controlled synthesis of cephalexin was examined using a purified Acetobacter turbidans acylase. When the pH of the reaction mixture was maintained at $6.20{\pm}0.04$, the reduction of the maximal conversion rate was not observed even with high enzyme loading. The kinetic parameters also suggest that pH drop during the enzymatic synthesis of cephalexin was mainly attributed to the rapid hydrolysis of D-${\alpha}$-phenylglycine methyl ester to D-${\alpha}$-phenylglycine, rather than the disappearance of 7-amino-3-deacetoxycephalosporanic acid for cephalexin synthesis. At higher molar ratio of two substrates, [D-${\alpha}$-phenylglycine methyl ester]/[7-amino-3-deacetoxycephalosporanic acid], the conversion rate was also elevated under pH-controlled enzymatic synthesis, which implies that the main reason for the pH drop is due to the production of D-${\alpha}$-phenylglycine methyl easter, the effect of a water-methanol cosolvent system on the ester, the effect of a water-methanol cosolvent system on the conversion profile was also examined. Even the though the conversion rate was increased in 10% methanol solution, a higher than 16% methanol in the reaction mixture caused an inactivation of enzyme.

  • PDF

Enzymatic Synthesis of Cephaloglycin

  • Doo-Hyun Nam;Heon-Soo Sohn;Dewey D. Y. Ryu
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.2
    • /
    • pp.72-76
    • /
    • 1983
  • Cephaloglycin was synthesized directly from D-${\alpha}$ -phenylglycine methyl ester and 7-aminocephalosporanic acid using whole cell enzyme of Xanthomonas citri (IFO 3835). Some optimal conditions for cephaloglycin synthesis were investigated, and yield improvements for its production by several methods were attempted. Using the whole cell enzyme system, the reaction kinetic model for cephaloglycin synthesis is proposed, and the kinetic constants for D-${\alpha}$ -phenylglycine methyl ester hydrolysis, cephaloglycin synthesis, and cephaloglycin hydrolysis were determined. The $K_m$ values of D-${\alpha}$-phenylglycine methyl ester, 7-aminocephalosporanic acid, and cephaloglycin were 11 mM, 24 mM, and 167 mM, and $K_i$ value of D-${\alpha}$-phenylglycine was 15 mM, respectively. The pattern of product inhibition was found to be competitive one.

Chromatographic Determination of the Absolute Configuration in Sanjoinine A That Increases Nitric Oxide Production

  • Soohyun Um;Hyeongju Jeong;Joon Soo An;Se Jin Jo;Young Ran Kim;Dong-Chan Oh;Kyuho Moon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.566-572
    • /
    • 2023
  • A chiral derivatization strategy with phenylglycine methyl ester (PGME) was employed to develop a straightforward method to determine the absolute configurations of N,N-dimethyl amino acids. The PGME derivatives were analyzed using liquid chromatography-mass spectrometry to identify the absolute configurations of various N,N-dimethyl amino acids based on their elution time and order. The established method was applied to assign the absolute configuration of the N,N-dimethyl phenylalanine in sanjoinine A (4), a cyclopeptide alkaloid isolated from Zizyphi Spinosi Semen widely used as herbal medicine for insomnia. Sanjoinine A displayed production of nitric oxide (NO) in LPS-activated RAW 264.7 cells.

Biosynthesis of Cephalexin in PEG400-Ammonium Sulfate and PEG400-Magnesium Sulfate Aqueous Two-Phase Systems

  • Cao, Xuejun;Zhu, Jianhang;Wei, Dongzhi;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.62-67
    • /
    • 2004
  • The biosynthesis of cephalexin was carried out in the aqueous two-phase systems using penicillin acylase as a catalyst, and 7-aminodeacetoxicephalosporanic acid (7-ADCA) and phenylglycine methyl ester (PGME) as substrates. 20% PEG400-l7.5% ${(NH_4)}_2SO_4$ containing 0.5 M NaCl and 1.5 M methanol aqueous two-phase systems (ATPS) were selected as reaction medium, and 53% product yield was obtained using immobilized penicillin acylase as a catalyst. 20% PEG400-l5% $MgSO_4$ ATPS was also used for the synthesis of cephalexin, and 60-62% product yield was obtained by using free penicillin acylase as a catalyst. When batch reactions were repeated in the ATPS, the cephalexin yields decreased during the reactions due to deactivation, loss, and product inhibition of penicillin acylase. The effect of different ratio of phenylglycine methyl ester to 7-ADCA on the product yield was investigated, and high cephalexin yield was obtained at a high molar ratio.

Amplicilin biosynthesis by immobilized enzyme

  • Kim, Young-Sik;Ryu, Dewy-D.Y.
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 1980
  • Ampliciline was synthesized from 6-amino-pencillanic acid (6-APA) and D-.alpha. phenylglycine methyl ester by using amplicilin synthesizing enzyme from Peudomonas melanogenum (IAM 1655). The whole cell enzyme was immobilized by entrapping it in the polyacrylamide gel lattices. The polymer used in the enzyme entrapment was made from 150 mg per ml of acrylamide monomer and 8 mg per ml of N, N'-methylenebisacrylamide. About 200 mg/whole cell enzyme was mixed in the polymer for entrapment. The maximal activity retention after immobilization was 56%. The optimal pH values for the whole cell enzyme and the immobilized whole cell enzyme were 6.0 and 5.9, respectively. The optimal temperature for the enzyme activity were the same for both type of preparations. The enzyme stabilities against pH and heat increased for immobilized whole cell enzyme. Immobilized cell was more stable especially in the acidic condition while both type were found to be very suceptible to thermal inactivation at a temperature above 4.deg.C. The kinetic constants obtained from Lineweaver-Burk plot based on two substate reaction mechanism showed somewhat higher value for immobilized whole cell enzyme as compared to the whole cell enzyme : the Km value for 6-APA were 7.0 mM and 12.5 mM while Km values for phenylglycine methyl ester were 4.5 mM and 8.2 mM, respectively. Using the immobilized whole cell enzyme packed in a column reactor, the productivity of ampiciline was studied by varying the flow rate of substrate solution. At the space velocity, SV, 0.14 hr$^{-1}$ the conversion was 45%. Operational stability found in terms of half life was 30 hr at SV = 0.2 hr.

  • PDF

Comparative Enantiomer Separation on Chiral Stationary Phases Derived from Chiral Crown Ether by HPLC (고성능 액체 크로마토그래피에서 키랄 크라운 에테르로부터 유도된 키랄 고정상을 이용한 광학분리의 비교)

  • Huang, Hu;Jeon, So-Hee;Kim, Ji-Yeon;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.232-236
    • /
    • 2012
  • Comparative liquid chromatographic enantiomer separation of ${\alpha}$-amino acids, their esters and primary amino compounds was performed using two chiral stationary phases (CSPs) prepared by covalently bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) of the same chiral selector. In general, the separation factors and resolution factors for these analytes on CSP 1 were greater than on CSP 2, while these capacity factors on CSP 2 were quite greater than on CSP 1. Except for leucine methyl ester and phenylalanine methyl ester, the elution orders of all analytes including ${\alpha}$-amino ${\alpha}$-alkyl acids and phenylglycine alkyl esters on CSP 1 are identical to those on CSP 2. This study showed that different connecting structures for these two CSPs might influence their ability to resolve the analytes depending on their structures related to the chiral recognition mechanism.

Synthesis of Nonclassical Quinazolinone Antifolates as Thymidylate Synthase Inhibitors and Their Antitumor Activity In Vitro

  • Baek, Du-Jong;Kang, Tae-Beom;Kim, Hyun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1898-1906
    • /
    • 2004
  • Nonclassical quinazolinone analogs I, II, and III, in which the glutamic acid moiety of the classical antifolates is substituted by phenylglycine, phenylalanine or aminobenzoic acid and their methyl esters, were synthesized and evaluated as lipophilic inhibitors of thymidylate synthase (TS). The target compounds were generally potent inhibitors of L. casei and human TS with $IC_{50}$ values within the narrow range of 0.2-10 ${\mu}$M and 0.003-0.03 ${\mu}$M, respectively. Further, most of the target compounds showed cytotoxicity against tumor cell lines of murine and human origin with $IC_{50}$ values of as low as 0.050 ${\mu}$M. Substitution of another hydroxyl or carboxylic acid/ester group at the phenyl ring further increased the potency of TS inhibition and cell growth inhibition. Most effective were compounds If and Ic in which extra carboxylic acid/ester was present at the phenyl ring with nanomolar $IC_{50}$ values of 0.0044 and 0.0093 ${\mu}$M against human TS and submicromolar cytotoxic growth inhibition against all four tumor cell lines.