Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.4.232

Comparative Enantiomer Separation on Chiral Stationary Phases Derived from Chiral Crown Ether by HPLC  

Huang, Hu (College of Pharmacy, Chosun University)
Jeon, So-Hee (College of Pharmacy, Chosun University)
Kim, Ji-Yeon (Department of Food and Drug, Chosun University)
Lee, Won-Jae (College of Pharmacy, Chosun University)
Publication Information
KSBB Journal / v.27, no.4, 2012 , pp. 232-236 More about this Journal
Abstract
Comparative liquid chromatographic enantiomer separation of ${\alpha}$-amino acids, their esters and primary amino compounds was performed using two chiral stationary phases (CSPs) prepared by covalently bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) of the same chiral selector. In general, the separation factors and resolution factors for these analytes on CSP 1 were greater than on CSP 2, while these capacity factors on CSP 2 were quite greater than on CSP 1. Except for leucine methyl ester and phenylalanine methyl ester, the elution orders of all analytes including ${\alpha}$-amino ${\alpha}$-alkyl acids and phenylglycine alkyl esters on CSP 1 are identical to those on CSP 2. This study showed that different connecting structures for these two CSPs might influence their ability to resolve the analytes depending on their structures related to the chiral recognition mechanism.
Keywords
Enantiomer separation; Chiral stationary phase; (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid; Chiral crown ether;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Hyun, M. H., J. S. Jin, and W. Lee (1998) A new HPLC chiral stationary phase for the direct resolution of racemic quinolone antibacterials containing a primary amino group. Bull. Kor. Chem. Soc. 19: 819-821.   과학기술학회마을
2 Hyun, M. H., J. S. Jin, and W. Lee (1998) Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatogr. A. 822: 155-161.   DOI
3 Hyun, M. H., J. S. Jin, and W. Lee (1999) Liquid chromatographic resolution of racemic amines and amino alcohols on a chiral stationary phase derived from crown ether. J. Chromatogr. A. 837: 75-82.   DOI
4 Hyun, M. H., S. C. Han, J. S. Jin, and W. Lee (2000) Separation of the stereoisomers of racemic fluoroquinolone antibacterial agents on a crown-ether-based chiral HPLC stationary phase. Chromatographia. 52: 473-476.   DOI
5 Hyun, M. H., S. C. Han, Y. J. Cho, J. S. Jin, and W. Lee (2002) Liquid chromatographic resolution of gemifloxacin mesylate on a chiral stationary phase. Biomed. Chromatogr. 16: 356-360.   DOI
6 Lee, W., C.-S. Baek, and K. Lee (2002) Chromatographic enantiomer separation of diphenylalanine on chiral stationary phases derived from chiral crown ethers. Bull. Kor. Chem. Soc. 23: 1677-1679.   과학기술학회마을   DOI
7 Lee, W., J. Y. Jin, and C.-S. Baek (2005) Comparison of enantiomer separation on two chiral stationary phases derived from (+)-18-crown-6-2,3,11,12-tetracarboxylic acid of the same chiral selector. Microchem. J. 80: 213-217.   DOI
8 Jin, J. Y., W. Lee, and M. H. Hyun (2006) Development of the antipode of the covalently-bonded crown ether type chiral stationary phase for the advantage of the reversal of elution order. J. Liq. Chrom. & Rel. Tech. 29: 841-848.   DOI
9 Jin, J. Y. and W. Lee (2007) Liquid chromatographic enantiomer resolution of N-hydrazide derivatives of 2-aryloxypropionic acids on a crown ether derived chiral stationary phase. Chirality. 19: 120-123.   DOI
10 Jin, J. Y., C.-S. Baek, and W. Lee (2007) Development of a validated HPLC method for the simultaneous determination of D- and L-thyroxine in human plasma. Bull. Kor. Chem. Soc. 28: 1070-1072.   과학기술학회마을   DOI
11 Jeon, S. H. and W. Lee, (2010) Monitoring of the optical purity for levothyroxine sodium in pharmaceuticals using crown ether derived chiral columns. KSBB J. 25: 449-452.   과학기술학회마을
12 Machida, Y., H. Nishi, K. Nakamura, H. Nakai, and T. Sato (1998) Enantiomer separation of amino compounds by a novel chiral stationary phase derived from crown ether. J. Chromatogr. A. 805: 85-92.   DOI
13 Machida, Y., H. Nishi, and K. Nakamura (1998) Nuclear magnetic resonance studies for the chiral recognition of the novel chiral stationary phase derived from 18-crown-6 tetracarboxylic acid. J. Chromatogr. A. 810: 33-41.   DOI
14 RS Thech, Product, Chromatography, Chirosil. http://www.rstechcorp.com
15 Hyun, M. H., Y. J. Cho, J. A. Kim, and J. S. Jin (2003) Preparation and application of a new modified liquid chromatographic chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. J. Chromatogr. A. 984: 163-171.   DOI
16 Bang, E., J.-W. Jung, W. Lee, D. W. Lee, and W. Lee (2001) Chiral recognition of (18-crown-6)-tetracarboxylic acid as a chiral selector determined by NMR spectroscopy. J. C. S. Perkin Trans. 2: 1685-1692.
17 Park, H.-J., Y. Choi, W. Lee, and K.-R. Kim (2004) Enantioseparation of aromatic amino acids and amino acid esters by capillary electrophoresis with crown ether and prediction of enantiomer migration orders by a three-dimensional quantitative structureproperty relationship/comparative field analysis model. Electrophoresis 25: 2755-2760.   DOI