• Title/Summary/Keyword: Phenolic Acids

Search Result 416, Processing Time 0.024 seconds

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Quality characteristics of fermented vinegar prepared with Seomaeyaksuk (Artemisia argyi H.) extract (섬애약쑥 주정 추출물로 제조한 발효식초의 품질특성)

  • Shin, Ji Hyeon;Kang, Min Jung;Byun, Hee Uk;Bea, Won Yoel;Shin, Jeong Yeon;Seo, Weon Tack;Choi, Jine Shang;Shin, Jung Hye
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.647-657
    • /
    • 2017
  • This study was carried out to investigate the quality characteristics of vinegars containing jaceosidin and eupatilin using Artemisia argyi H. ethanol extract (AEE). 10% malt extract (ME) and water extract of Artemisia argyi H. (AWE) were also prepared for vinegar production. Three kinds of materials were mixed in the same amount to prepare vinegar as follows; CO (ME, water, 18% edible ethanol), SE (ME, water, and AEE), SW (ME, AWE, and 18% edible ethanol) and SM (ME, AWE, AEE). All samples were fermented by Acetobacter pasteurianus A8 at $30^{\circ}C$ for 25 days and analyzed at 10, 15, 20 and 25 days. The pH decreased significantly during the fermentation. pH was lower in SE and SM than CO and SW. The acidity increased significantly during the fermentation, and was highest in SM (4.44%) at 25 days of fermentation. The concentration of acetic acid was higher than other organic acids for all vinegars. Jaceosidin and eupatilin were not detected in both CO and SW, but both were detected in the SE and SM. At 25 days of fermentation, jaceosidin and eupatilin concentrations in SE and SM were 6.49-6.88 mg/kg and 2.23-2.24 mg/kg, respectively. From these results, we confirmed that production of vinegar containing jaceosidin, eupatilin and phenolic compounds can be prepared by using Artemisia argyi H. edible ethanol extract.

A Comparative Study on the Chemical Characteristics and Antioxidant Effects of Sea Mustards Sourced from Different Areas in Taejongdae (태종대산 5종 돌미역의 화학성분 및 항산화활성 비교)

  • Kim, Hojun;Jayapala, HPS;Jo, Won Hee;Nam, Hyung Sik;Lim, Sun Young
    • Journal of Life Science
    • /
    • v.31 no.6
    • /
    • pp.559-567
    • /
    • 2021
  • This study compared the nutritional characteristics and antioxidant effects of sea mustards sourced from five different areas (Barammaegi, Gultongmeori, Chanmulgae, Johongtaek, and Goraedeung) in Taejongdae, Youngdo, Busan. The contents of total flavonoids and phenols and fatty acid composition were measured. To evaluate their antioxidant effects, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays were used. Acetone/methylene chloride (A+M) extracts from all the sea mustards contained higher amounts of total flavonoids and phenols than methanol (MeOH) extracts. Among the sea mustards obtained from the different areas, the total flavonoid and total phenolic content of the A+M extract of the sea mustard from Gultongmeori was 1.44±0.04 mg/g and 1.72±0.06 mg/g, respectively. In terms of the fatty acid composition, the Gultongmeori sea mustard had higher percentages of total n-6, total n-3, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) than the sea mustards from the other areas. The A+M extract of the sea mustard from Gultongmeori was more effective in terms of scavenging free radicals as compared with that of the other sea mustards, as assessed by the DPPH and ABTS assays (p<0.05). In a 120-minute reactive oxygen species (ROS) production assay, all the extracts tested decreased cellular ROS production induced by H2O2 compared to that produced by exposure to an extract-free control (p<0.05). The extracts from Barammaegi and Gultongmeori had a greater inhibitory effect on cellular ROS production. These results indicated that the antioxidant effects of sea mustards might be associated with a higher amount of flavonoids and phenols. This study suggests that food-processed products from sea mustard can be developed as functional foods for promoting health in the local population.

Promotion effects of steam-dried Betula platyphylla extract on hair regrowth (자작나무 증포 추출물의 발모 촉진 효과)

  • Ahn, Jeong Won;Jang, Su Kil;Jo, Bo Ram;Kim, Hyun Soo;Jeoung, Eui Young;Hillary, Kithenya;Yoo, Yeong Min;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • Regulation of the hair follicle cycle in association with dermal papilla cells is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether steam-dried Betula platyphylla extracts (BPE) promote hair growth by upregulating in vitro and in vivo responses of dermal papilla cells. The data showed that BPE3 contained high amounts of phenolic compounds with higher antioxidant effects and increased hair growth-related genes, including fibroblast growth factor7 and Wnt7b, in dermal papilla cells. Notably, BPE3 effectively enhanced the formation of hair follicles by increasing FGF7, Wnt7b, and vascular endothelial growth factor in C57BL/6N dorsal skins. Additionally, BPE3 significantly decreased the expression of inflammatory repertoires, inducible nitric oxide synthase, interleukin-6, and cyclooxygenase 2. Several small molecules, such as betulin and unsaturated fatty acids, support the pharmacological activity of BPE3. In conclusion, BPE3 effectively promoted hair growth by activating dermal papilla cells and enhancing hair follicle cycles by attenuating the inflammatory environment in the scalp.

Taste Compounds and Antioxidant Properties in Extracts of Angelica keiskei and Oenanthe javanica Juice By-Products According to Extraction Methods (추출 방법에 따른 명일엽과 돌미나리 착즙박의 정미성분 및 항산화 특성)

  • Hyun Jung Lee;Ha Na Ryoo;Hyeon Gyu Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.517-527
    • /
    • 2023
  • This study aimed to examine the possibility of upcycling extracts of Angelica keiskei and Oenanthe javanica juice by-products through comparing enzyme extraction (EE) and complex extraction (CE) methods to increase the extraction yield and flavor of materials. A higher extraction yield was obtained for free amino acid content with EE and CE for A. keiskei and O. javanica juice by-products, respectively, and a higher extraction efficiency was achieved with juice by-products than with extracts prepared from raw materials before juice production. The content of major amino acids varied depending on the extraction method used. When used according to the characteristics of the extract, their use as a functional material was confirmed along with improvement in the flavor of the food. Consistently high extraction yields for organic acid and sugar levels were obtained with CE in A. keiskei and O. javanica juice by-products. The DPPH radical scavenging ability and TPC were consistently high with CE in A. keiskei and O. javanica juice by-products; the increase in extracted content was likely because of the reaction between the ethanol used for CE and the phenolic compounds. However, because the antioxidant capacity of the juice by-product extracts was somewhat lower than that of the extracts from raw materials before juice production, the amount used should be reviewed. The TFC was found to be higher in extracts obtained with EE than with CE for A. keiskei juice by-products; however, no significant difference was observed between EE and CE in the O. javanica juice by-products. Through this study, the taste compounds and antioxidant properties of extracts obtained from juice by-products produced after the production of A. keiskei and O. javanica green juice were analyzed, and the availability of high value-added materials was confirmed. Based on these research results, expanding specific R&D for practical use should be explored.

Histological and Biochemical Studies on the Rooting of Hard-wood Cuttings in Mulberry (Morus species) (뽕나무 古條揷木의 發根에 關한 組織 및 生化學的 硏究)

  • Lim, Su-Ho
    • Journal of Sericultural and Entomological Science
    • /
    • v.23 no.1
    • /
    • pp.1-31
    • /
    • 1981
  • Rootability of the hardwood cuttings of mulberry was related not only histological characteristics but dependent on biochemical properties. In this connection, the characteristics of the hardwood cuttings were histologically observed and the growth substances produced by the cuttings were also identified by means of mung bean bioassay. Amino acid, carbohydrate, nucleic acid contents, and the C/N ratio were also analysed. The results are summarized as follows. 1. There were differences in rootability of cuttings between mulberry species and varieties Among the three mulberry species tested, Morus Lhou Koidz. showed the highest rootability while M. bombycis showed the lowest one. In varietal differences in rootability, it was shown that the varieties could be grouped according to rootability: high varieties(above 80%), medium(41~79%), and low(below 40%). The higher varieties were Kemmochi, Nakamaki, Kosen, and Wusuba roso. 2. The histological characteristic of the hardwood cuttings most closely related to rootability was cell layer arrangement in the sclerenchyma tissue. The lower rootability varieties developed two or three overlapping cell layers in the bark tissue and in the higher rootability varieties they were scattered over the primary cortex. 3. In the higher rootability varieties, there was a positive correlation between the development of root primodia and rootability of the hardwood cuttings. It was also shown that there was a close relationship between the size of primodia and the surface area of the lenticel with rootability of the cuttings. 4. Effect of growth substances extracted from the hardwood cuttings were determined by mung bean bioassay. The higher rootability varieties usually showed higher activities of the growth substances, in contrast the lower rootability varieties showed higher activities of the inhibitory substances. 5. It was evident that the substance separated by paper chromatography was identified as indole acetic acid with $R_f$ value ranging from 0.3 to 0.5. The other substances detected at a $R_f$ value ranging from 0.8 to 1.0 and origin to 0.1 were also responsible for rooting. 6. There exists a quantitatively different distribution of growth substances in a synergistic system in the tissues of cuttings, and the balance between growth and inhibitory substances gives rise to the development of rooting. Particularly, no descent of the substances from winter buds resulted in no rooting of cuttings but these substances were produced a week after planting in a warm environment. 7. It was shown that there were positive correlations between carbohydrate ($r=0.72^*$) and total sugar ($r=0.67^*$) and rootability, respectively, but there were negative correlations between reducing sugars ($r=-0.75^*$) and rootability. 8. High C/N ratio gave rise to high rootability($r=0.67^*$). The latter therefore depended on high amount of carbohydrate rather than nitrogen in the cuttings. 9. The content of RNA and DNA in the cuttings was not changed for upto two weeks after the cuttings were planted. Then an increase in RNA content took place in only the high rootability varieties. 10. There were quantitative and qualitative differences in the compositions of the amino acids between the high rootability varieties and the low rootability varieties. More aspartic acid and cystine were found in the higher rootability varieties than in the low rootability varieties.

  • PDF