• Title/Summary/Keyword: Phenol.formaldehyde resin

Search Result 90, Processing Time 0.021 seconds

난연.기능성 복합성형체 제조 및 특성

  • 현병민;강영구
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.457-460
    • /
    • 2002
  • 현재 건축단열재, 흡음재, 바닥재로 사용되는 panel 성형, 제작하기 위해 다종의 유기고분자 matrix가 사용되고 있으며 polyurethane, vinyl acetate, urea-formaldehyde resin 또는 melamine-formaldehyde, phenol-form aldehyde resin 등을 사용하고 있으나 이러한 고분자 matrix를 사용한 건축용 panel의 경우 화재시 유독 gas와 더불어 급격한 화재전파의 매개체로 사용될 수 있어 난연제 첨가로 이러한 현상을 억제하고 있다.(중략)

  • PDF

Preparation and characterization of boron-nitrogen coordination phenol resin/SiO2 nanocomposites

  • Gao, J.G.;Zhai, D.;Wu, W.H.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.259-269
    • /
    • 2014
  • The boron-nitrogen-containing phenol-formaldehyde resin (BNPFR)/$SiO_2$ nanocomposites (BNPFR/$SiO_2$) were synthesized in-situ, and structure of BNPFR/$SiO_2$ nanocomposites was characterized by FTIR, XRD and TEM. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposites cured with different nano-$SiO_2$ content are determined by torsional braid analysis (TBA). The thermal degradation kinetics was investigated by thermogravimetric analysis (TGA). The results show that nano-$SiO_2$ particulate with about 50 nm diameter has a more uniformly distribution in the samples. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposite is $214^{\circ}C$ when nano-$SiO_2$ content is 6 wt%. The start thermal degradation temperature $T_{di}$ is higher about $30^{\circ}C$ than pure BNPFR. The residual rate (%) of nanocomposites at $800^{\circ}C$ is above 40 % when nano-$SiO_2$ content is 9 %. The thermal degradation process is multistage decomposition and following first order.

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Mechanical and Physical Properties of Roof Tile Prepared from Sugar Cane Fiber

  • Wong on, Jessada;Surin, Prayoon;Apawet, Chaiyaprek;Eidhed, Krittee;montra, Sunate;Aumkongthum, Kaichai;Thumsorn, Supaphorn
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.86-89
    • /
    • 2015
  • Sugar cane, renewable fiber resources, were used for roof tile production. Urea formaldehyde, phenol formaldehyde and isocyanate resin were used as binders in this study. Roof tile specimens with 400 mm wide, 400 mm long and 5 mm thick were prepared by compression molding. Physical and mechanical properties of the specimens were analyzed by water absorption, thickness swelling, thermal conductivity, density, modulus of rupture and modulus of elasticity. From the results, water absorption at 1 and 24 hours was 19-47 % and 38-57 %, respectively. Thickness swell at 24 hours was 15-29%. Thermal conductivity was 0.016, 0.017 and 0.019 W/m.K when using isocyanate, urea formaldehyde and phenol formaldehyde, respectively. Density of the specimens was 770-860 kg/m3. Modulus of rapture was 255-280 MPa. Modulus of elasticity was 5.1-7.6 GPa. Physical and mechanical properties of the specimens indicated that they would be applied for roof tile and construction.

Fabrication of insulating fifes using phenolic polymer and electrical properties in MIM structure (페놀계 고분자를 이용한 절연막의 제작과 MIM구조에서의 전기적 특성)

  • 김경환;유승엽;정상범;박재철;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.347-349
    • /
    • 1999
  • We have fabricated insulating thin films using p-hexadecoxyphenol(p-Hp) that was formed phenol-formaldehyde resin of crosslinked structure from reaction with formaldehyde by LB technique. For fabricated MIM device, the possibility for insulating layers of electronic were investigated by electrical properties of their LB films according to crosslinking of LB films current-voltage (I-V) properties and frequency-capacitance (C-F) characteristics. We have provided evidence for the high insulating performance of phenol-formaldehyde thin films by the LB method. Conductivity of their LB films was as follows: pure water > 1 % aq. Formaldehyde > heat treatment, in the current-voltage (I-V) characteristics. It is demonstrated that insulation properties of crosslinked p-HP LB films were improved. In capacitance-frequency properties, the heat-treated p-HP LB films for crosslinking showed a low relative dielectric constant.

  • PDF

Manufacture of Wood Veneer-Bamboo Zephyr Composite Board: II. Effect of Manufacturing Conditions on Properties of Composite Board (목재 단판-대나무 제퍼 복합보드 제조: II. 복합보드의 성능에 미치는 제조조건의 영향)

  • Roh, Jeang Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.108-117
    • /
    • 2007
  • This research was performed to investigate the feasibility of bamboo as a raw material for the manufacture of plywood. Wood veneer-bamboo zephyr composite boards (WBCB) were manufactured using keruing (Dipterocarpus sp.) veneers and hachiku bamboo (Phyllostacbys nigra var. henonis Stapf) using various adhesives, and the effect of the method and amount of resin spread on the mechanical properties of the composites were investigated. The WBCB manufactured using polymeric isocyanate (PMDI) showed the best mechanical properties, followed by phenol-formaldehyde resin (PF), phenol-melamine-formaldehyde resin, urea-melamine-formaldehyde resin, and urea-formaldehyde resin. However, considering the operation feasibility as well as mechanical properties, PF resin proved to be the appropriate adhesive for the practical purpose. As the amount of resin spread increased, the mechanical properties of 5-ply WBCB with 12 mm thicknesses manufactured using PF resin tended to increase, and more failure occurred at the interface between veneer and bamboo zephyr than at the interface among bamboo zephyrs. This result suggests that penetration of resin into bamboo zephyr could be the important factor. In this research, the appropriate amount of resin amount was $320g/m^2$. 5-ply WBCBs were manufactured using various methods of resin spread but the effect of the methods on the mechanical properties showed no little difference, which meant that the method of resin spread could be chosen considering the manufacturing conditions and operation feasibility.

페놀분해 효모 Candida tropicalis PW-51의 분리 및 분해특성

  • Kim, Seong-Bin;Kim, Chi-Kyung;Kim, Hee-Sik;Lee, Chang-Ho;Shin, Ki-Sun;Kwon, Gi-Seok;Yoon, Byung-Dae;Oh, Hee-Mock
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.743-748
    • /
    • 1996
  • For the biological treatment of phenolic resin wastewater containing phenol and formaldehyde, a phenol-degrading yeast was isolated from the papermill sludge, and then identified as Candida tropicalis PW-51 according to morphological, physiological and biochemical properties. The strain was able to degrade high phenol concentrations up to 2,000mg/l within 58 hours in batch cultures. Phenol-degrading efficiency by the strain was maximum at the culture conditions of a final concentration of 9 $\times$ 10$^{6}$ cells/ml, 30$\circ$C and pH 7.0. The mean degradation rate of phenol was highest at 45.5mg/l/h in 1,000mg/l phenol from 500mg/l to 2,000mg/l phenol. Because the enzyme activity of catechol 1,2-dioxygenase increased in the course of degradation of phenol, it seems that this strain degrades phenol via the ortho-cleavage of benzene ring. The isolate C. tropicalis PW-51 could be effectively used for the biological treatment of phenolic resin wastewater.

  • PDF