• 제목/요약/키워드: Phenol resin

검색결과 248건 처리시간 0.018초

기능성 커플링제와 페놀수지에 의한 유리섬유 다발의 표면개질 연구 (Modification of glass fiber bundle with functionalized coupling agents and phenolic resin)

  • 이수
    • 한국응용과학기술학회지
    • /
    • 제33권1호
    • /
    • pp.168-175
    • /
    • 2016
  • 유리섬유 번들의 인장강도와 복합재료의 매트릭스수지인 페놀수지와의 접착성을 향상시키기 위하여 관능기를 가진 실란 커플링제와 페놀 수지를 이용하여 표면을 개질하였다. 일반적으로 보강재인 유리섬유의 표면을 화학적으로 개질하므로 복합재료의 특성을 조절할 수 있다. 본 연구에서는 에폭시계인 glycidyltrimethoxysilane(G-silane)과 아미노계 aminopropyltriethoxysilane (A-silane)과 페놀 수지를 사용하여 여러 농도와 온도에서 유리섬유 표면에 1단계 처리 및 2단계 복합처리를 수행하였다. 이 때 열처리 조건이 인장강도를 향상시키는 데 가장 중요하였다. 즉 $170^{\circ}C$에서 처리된 유리섬유의 인장강도가 $10.05g_f/D$로 최대를 나타내었다. 개질 후의 유리섬유 표면은 전자현미경과 적외선분광법을 이용하여 분석하였다. 실란의 종류와 처리 조건에 따른 유리 섬유 기계적 강도에 관한 영향도 고찰하였다.

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권3호
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

탄화규소막의 형성에 의한 흑연소지의 내산화성 향상에 관한 연구 (A Study on the Improvement of the Oxidation-Resistance of the Graphite Substrate by Forming of SiC Film on its Surface)

  • 조성준;이종민;김인기;장진석
    • 자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.137-146
    • /
    • 1996
  • Sol-Gel법에 의해 흑연소지의 표면에 SiC막을 형성해 줌으로써 내산화성을 향상시키고자 하였다. 규소(Si) 및 탄소(C)의 근원물질로는 TEOS(Tetraethyl orthosilicate)와 phenol수지를 각각 사용하였으며, TEOS sol의 농도가 SiC막의 형성에 미치는 영향을 알아 보기 위해, $H_2O$/TEOS의 몰비를 2, 4, 6, 8 및 10으로 변화시켜 흑연소지에 SiC가 피복된 상태를 X-ray diffractometer와 SEM(scanning electron microscope)을 이용하여 분석한 결과, 약 5 ${\mu}m$, 12 ${\mu}m$, 7 ${\mu}m$, 7 ${\mu}m$ 및 2 ${\mu}m$의 SiC코팅층이 각각 형성되었음을 알 수 있다. 또, 내산화성을 알아보기 위해 $1600^{\circ}C$에서 코팅된 흑연소지를 다시 공기중에서 $1000^{\circ}C$의 온도하에서 1 시간 동안 열처리 해 준 후의 무게소실율을 조사한 결과, 각각 26.17%, 20.97%, 17.28%, 21.73% 및 28.13%로 나타났다.

  • PDF

Properties of Glued Laminated Timber Made from Fast-growing Species with Mangium Tannin and Phenol Resorcinol Formaldehyde Adhesives

  • Hendrik, Jessica;Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Santoso, Adi;Pizzi, Antonio
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권3호
    • /
    • pp.253-264
    • /
    • 2019
  • This study characterized the chemical compounds in tannin from mangium (Acacia mangium) bark extract and determined the physical-mechanical properties of glued laminated timber (glulam) made from sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), and mangium wood. The adhesives used to prepare the glulam were based on mangium tannin and phenol resorcinol formaldehyde resin. Five-layer glulam beams measuring $5cm{\times}6cm{\times}120cm$ in thickness, width, and length, respectively, were made with a glue spread of $280g/m^2$ for each glue line, cold pressing at $10.5kgf/cm^2$ for 4 h and clamping for 20 h. Condensed mangium tannin consisted of 49.08% phenolic compounds with an average molecular weight of 4745. The degree of crystallinity was 14.8%. The Stiasny number was 47.22%. The density and the moisture content of the glulams differed from those of the corresponding solid woods with mangium having the lowest moisture content (9.58%) and the highest density ($0.66g/cm^3$). The modulus of rupture for all glulam beams met the JAS 234-2003 standard but the modulus of elasticity and the shear strength values did not. Glulam beams made with tannin had high delamination under dry and wet conditions, but glulam made from sengon and jabon wood met the standard's requirements. All glulam beams had low formaldehyde emissions and were classified as $F^{****}$ for formaldehyde emissions according to the JAS 234 (2003) standard.

PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향 (Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC)

  • 이재영;이우금;임형렬;정규범;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

Effect of Wood-Fiber Characteristics on Medium Density Fiberboard (MDF) Performance

  • Park, Byung-Dae;Kim, Yoon-Soo;Riedl, Bernard
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.27-35
    • /
    • 2001
  • Four different sources of wood-fibers from Eucalyptus, Italian poplar, hemlock, and mixed species fibers were used to study the influence of their fiber characteristics on the performance of medium density fiberboard (MDF) panels bonded with both urea-formaldehyde (UF) and phenol-formaldehyde (PF) adhesives. Included fiber characteristics were fiber length, size distribution, bulk density, and acidity. Physical and mechanical properties of MDF panels manufactured by dry process using these different fibers were determined for the comparison of board performance. Two hardwood species had a large fraction of short fibers resulting in a higher bulk density while very long hemlock fibers had lower bulk density. Fiber acidity was revealed to strongly affect the internal bond (IB) strength of MDF panels bonded with UF resins. MDF panels made from mixed species fibers showed highest IB strength of all panels prepared. UF-bonded MDF panels showed poor dimensional stability. In conclusion, the present study showed that wood-fiber characteristics such as fiber length, bulk density, and acidity affect the performance of MDF boards, and also suggested that fiber characteristics be considered for MDF panel manufacture.

  • PDF

저농도 페놀수지 주입처리에 의한 평죽판 개발(1) (Development of Compressed-flattened Bamboo Impregnated with Low Molecular Weight PF Resin(1))

  • 이화형;김관의
    • 한국가구학회지
    • /
    • 제12권2호
    • /
    • pp.29-38
    • /
    • 2001
  • This study was carried out to develope a new process of flattening bamboo pieces(3 months old) by two steps of utilizing microwave oven and hot press. Internode bamboo pieces were impregnated with low molecular weight phenol formaldehyde resin (PF) under vacuum of 76 cmHg, heated in a household microwave oven in 1 minute, pressed on the temperature of $145^{\circ}C$ by the hot press for 10 minute, and then cooled by the cold press in their flattened form. The physical and mechanical . Properties of compressed flattened bamboo were as follows: 1) PF1(Mw:427) and PF2(Mw:246) sol. met the success of flattening of internode bamboo pieces in both of P. bambusoides and P. nigra var. PF2 showed the more plasticity to flatten the bamboo than PFI. The PF2 sol. with low molecular weight(Mw:246) gave the more weight gain than that of PF1 in the equal concentration. PF1 of 5% (NVC) and PF2 of 10% (NVC) sol. gave the best result for physical and mechanical properties and from a economical view point. 2) The PFI of 5% (NVC) sol. with low molecular weight decreased the water absorption of 62-63% and increased the bending strength (MaR) of 80-90%, compression strength of 43-54%. 3) The PF2 of 10% (NVC) sol. with low molecular weight decreased the water absorption of 56-57% and increased the bending strength (MaR) of 64-86%, compression strength of 39-63%.

  • PDF

습식공법으로 제조한 목탄-목재섬유복합재료의 에틸렌가스 흡착력과 과일 신선도 유지 효과 (Ethylene gas adsorption capacity and preserving effect of fruit freshness of Charcoal-fiberboard by wet forming process)

  • 이화형;김관의
    • 한국가구학회지
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2003
  • This research was carried out for packing materials and building materials to examine thylene gas adsorption and effect of keeping fruit fresh of wet formed charcoal-fiber mposite made from defibrated fiber of Pinus densiflora Sieb. et Zucc. and white charcoal from uercus variabilis Bl.(wood fiber: charcoal=8:2, 6:4, 4:6, 2:8), with/without phenol formaldehyde resin(PF, Non volatile content:$52\%$, resin content $1,3,5\%$). The results are summarized as follows: 1. The higher the charcoal content, the more the ethylene gas adsorption. At the same mixing ratio of fiber to charcoal, $\#100-200$ of charcoal particle size gave the better reslts than $\#60-100$. 2. Adding PF into the charcoal fiber composite decreased the capacity of ethylene gas adsorption but there was no significant difference until $5\%$ adding amount of PF. 3. For keeping fruit fresh for a long time, Charcoal fiber composite was $66\%$ longer than control. The higher the white charcoal content, the longer fresh time.

  • PDF

파티클보드에 폴리에틸렌 첨가의 효과 (Effects of Polyethylene Addition in Particleboard)

  • 오용성
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권2호
    • /
    • pp.25-31
    • /
    • 2000
  • 저밀도 폴리에틸렌 가루를 실험실 파티클보드의 hydrophobic (소수성) 첨가제로서 사용하였다. Southem pine 파티클과 실험실에서 합성한 페놀수지를 이용하여 2가지 열압온도와 3가지 폴리에틸렌 첨가량으로 파티클보드를 제조하였다. 파티클보드의 밀도, 힘강도, 박리강도 등의 성질과 물에 대한 치수안정화에 대해 성능을 ASTM D 1037과정에 의해서 평가하였다. 평가된 결과는 폴리에틸렌 첨가량과 열압온도가 증가됨에 따라서 두께팽창률과 물흡수율은 감소한다는 것을 보여준다. 그러나 파티클보드의 물리적인 성질은 폴리에틸렌 첨가량이 증가됨에 따라 나쁜 영향을 준다. 이런 결과는 폴리에틸렌이 패널의 안정화를 개선하기 위해 오직 제한된 양만이 사용될 수 있다는 것을 보여준다.

  • PDF

Destructive and Non-destructive Tests of Bamboo Oriented Strand Board under Various Shelling Ratios and Resin Contents

  • Maulana, Sena;Gumelar, Yuarsa;Fatrawana, Adesna;Maulana, Muhammad Iqbal;Hidayat, Wahyu;Sumardi, Ihak;Wistara, Nyoman Jaya;Lee, Seung Hwan;Kim, Nam Hun;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.519-532
    • /
    • 2019
  • The objectives of this study were to evaluate the effects of shelling ratio and resin content on the properties of bamboo oriented strand board (BOSB) from betung (Dendrocalamus asper) and to determine the correlation between the results of dynamic and static bending tests. Strands were steam-treated at $126^{\circ}C$ for 1 h under 0.14 MPa pressure and followed by washing with 1% NaOH solution. Three-layer BOSB with the core layer perpendicular to the surface was formed with shelling ratios (face:core ratio) of 30:70; 40:60; 50:50; 60:40 and binded with 7% and 8% of phenol formaldehyde (PF) resin with the addition of 1% of wax. The evaluation of physical and mechanical properties of BOSB was conducted in accordance with the JIS A 5908:2003 standard and the results were compared with CSA 0437.0 standard for commercial OSB (Grade O-1). Non-destructive testing was conducted using Metriguard Model 239A Stress Wave Timer which has a wave propagation time from 1 to $9,999{\mu}s$ and a resolution of $1{\mu}s$. BOSB with 8% resin content showed better physical and mechanical properties than those with 7% resin content. The increase of the face layer ratio improved the strength of BOSB in parallel direction to the grain. The results suggested that shelling ratio of 50:50 could be used as a simple way to reduce PF resin requirements from 8% to 7% and to meet the requirements of CSA 0437.0 standard. The results of non-destructive and destructive tests showed a strong correlation, suggesting that non-destructive test can be used to estimate the bending properties of BOSB.