• 제목/요약/키워드: Phenol oxidation

검색결과 154건 처리시간 0.022초

과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화 (Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron)

  • 김철용;안준영;김태유;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권2호
    • /
    • pp.17-25
    • /
    • 2017
  • The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.

페놀의 오존 산화시 관찰된 HAA 전구물질 변화에 관한 연구 (A Study on the Variation of HAA Precursors by Ozonation of Phenol)

  • 오병수;김경숙;강준원
    • 한국물환경학회지
    • /
    • 제21권2호
    • /
    • pp.153-157
    • /
    • 2005
  • The purpose of this study was to find out the effect of oxidation by-products for the formation of haloacetic acid (HAA) during ozonation. The phenol was used as a model precursor of HAA, and its oxidation by-products, such as hydroquinone, catechol, glyoxal, glyoxylic acid and oxalic acid were investigated to find out how much HAA formation potential (HAAFP) they have. As the result, among the phenol and its oxidation by-products, the highest reactivity with chlorine was found from the phenol, showing the highest HAAFP. Even though the tested by-products had a lower HAAFP than phenol, it was confirmed that all of them can act as the precursor of HAA. From the ozonation of phenol-containing water, it was found that the efficiency of ozone in controlling of HAAs can be reduced due to the oxidation by-products. In addition, the ozonation of HAAFP was performed under the both pH conditions (acid and base), and the result indicates that OH radical play a important role to decrease HAAFP.

백금전극을 이용한 페놀의 산화특성에 관한 연구 (A study on the oxidation characteristics of phenol on Pt anode)

  • 김흥수;남종우;남기대
    • 공업화학
    • /
    • 제1권1호
    • /
    • pp.44-51
    • /
    • 1990
  • 백금전극에 의한 페놀의 전기화학적 산화거동을 순환 전류전압법에 의하여 연구 검토하였다. 페놀의 초기산화전위는 산성용액에서는 전해질용액의 액성에 크게 영향을 받으나, 염기성용액에서는 0.33-0.40V범위로 거의 일정한 산화전위를 나타내었고, 페놀의 농도변화에 따른 전기화학적 산화의 최적농도는 0.IN부근에서 가장 유리하였다. 그리고 주사속도변화에 따른 조사에서 페놀 산화반응은 비가역적이고 확산이 이 반응을 지배한다.

  • PDF

Indirect Electrochemical Oxidation of Phenol by Ce4+, Controlling Surface Insulation of Au Electrode

  • Pyo, Myoung-Ho;Moon, Il-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.899-902
    • /
    • 2005
  • Indirect electrochemical oxidation of phenol by $Ce^{4+}$ was investigated in sulfuric acid solutions. It was found that electrode fouling during oxidation of phenol can be controlled by adjusting the time interval (TI) of double potential steps (DPSs). While the electroactivity was greatly decreased after several DPSs of a relatively long TI, repeated DPSs with a short potential pulse showed substantial amounts of electroactivity after a few hundreds or thousands DPS, suggesting that the formation of an insulating layer can be controlled by adjusting a potential program. Effectiveness of the consecutive application of DPSs for phenol decomposition was confirmed by GC-MS.

Influencing Parameters on Supercritical Water Reactor Design for Phenol Oxidation

  • Akbari, Maryam;Nazaripour, Morteza;Bazargan, Alireza;Bazargan, Majid
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.85-93
    • /
    • 2021
  • For accurate and reliable process design for phenol oxidation in a plug flow reactor with supercritical water, modeling can be very insightful. Here, the velocity and density distribution along the reactor have been predicted by a numerical model and variations of temperature and phenol mass fraction are calculated under various flow conditions. The numerical model shows that as we proceed along the length of the reactor the temperature falls from above 430 ℃ to approximately 380 ℃. This is because the generated heat from the exothermic reaction is less that the amount lost through the walls of the reactor. Also, along the length, the linear velocity falls to less than one-third of the initial value while the density more than doubles. This is due to the fall in temperature which results in higher density which in turn demands a lower velocity to satisfy the continuity equation. Having a higher oxygen concentration at the reactor inlet leads to much faster phenol destruction; this leads to lower capital costs (shorter reactor will be required); however, the operational expenditures will increase for supplying the needed oxygen. The phenol destruction depends heavily on the kinetic parameters and can be as high as 99.9%. Using different kinetic parameters is shown to significantly influence the predicted distributions inside the reactor and final phenol conversion. These results demonstrate the importance of selecting kinetic parameters carefully particularly when these predictions are used for reactor design.

고농도 페놀 폐수의 습식산화와 호기성 생물학적 통합처리 (Integrated Wet Oxidation and Aerobic Biological Treatment of the Wastewater Containing High Concentration of Phenol)

  • 최호준;이승호;유용호;윤왕래;서일순
    • KSBB Journal
    • /
    • 제22권4호
    • /
    • pp.244-248
    • /
    • 2007
  • 고농도 페놀폐수 전처리 습식산화공정의 반응온도, 초기 pH 및 균일촉매 ($CuSO_4$) 등이 후처리 호기성 생물학적 공정에 미치는 영향을 조사하였다. 습식산화에서의 높은 반응온도와 산성 초기조건이 후처리 생물학적 산화공정에서 높은 산화속도와 최종 COD 제거율을 유발하였다. 습식산화에서 균일촉매를 사용하면 전처리 습식산화반응은 낮은 반응온도에서도 높은 COD 제거속도를 보였으나, 후처리 생물학적 산화공정에서는 낮은 최종 COD 제거율을 나타내었다.

이산화염소에 의한 페놀제거 및 살균 (Disinfection & Removal of Phenol by Chlorine Dioxide)

  • 정승우;최희철;강준원;김종배;최승일
    • 상하수도학회지
    • /
    • 제7권2호
    • /
    • pp.24-33
    • /
    • 1993
  • The effects of chlorine dioxide on the oxidation of phenol and disinfection were studied in the various test water conditions. With the 0.3mg/l of chlorine dioxide dose, the spiked phenol(initial concentration: 0.1mg/l) was completely oxidized within 10 minute. The removal rate of phenol was much faster in distilled water than in ground water and filtered water. The applied dose of chlorine dioxide concentrations higher than 0.2mg/l was sufficiently enough for the complete oxidation of phenol. However, with 0.1mg/l of dose, chlorine dioxide can oxidize only 20% of the spiked phenol. The reactive substances present in test water may influence the chlorine dioxide demand in water. pH effect of oxidation rate was also investigated. Increasing the pH, the removal rate of phenol was found to be increased. The disinfection test of chlorine and chlorine dioxide were conducted and compared. The lethal effect for the both disinfectants are similarly powerful. The time for 99% inactivation of E. coli was obtained within 120 sec with the 0.2mg/l of each dose.

  • PDF

전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 - (Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment -)

  • 양해영
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.

Phenol성 물질이 첨가된 Corn Oil-in-Water Emulsion의 산화에 미치는 Surfactant Micelle의 영향 (Effect of Surfactant Micelle on Lipid Oxidation in Corn Oil-in-Water Emulsion with Phenol Compounds)

  • 김병규;천성숙;조영제
    • Applied Biological Chemistry
    • /
    • 제47권1호
    • /
    • pp.72-77
    • /
    • 2004
  • 5% corn oil과 17 mM Brji 700으로 제조한 oil-in-water emulsion(O/W)에서 과량의 잉여 surfactant가 phenol이 첨가된 O/W의 산화에 미치는 영향을 알아보기 위하여 Brji 700을 $0{\sim}2%$의 농도로 O/W에 첨가한 경우, 첨가된 surfactant의 양이 증가할수록 droplet의 particle size는 커지는 경향을 나타내었다. 또한 continuous phase의 surfactant 농도도 높아지며 phenol 함량도 상대적으로 높아지는 것을 알 수 있었다. Phenol류가 100 ppm의 농도로 첨가된 O/W에 과량의 surfactant$(0{\sim}2%)$를 첨가하고 30일간 저장 기간별 hydroperoxide의 생성량을 측정한 결과, 대조구에 비해 낮은 hydroperoxide 함량을 보여 surfactant를 첨가하지 않은 실험구와 유사한 경향을 보였으나, hydroperoxide 함량은 surfactant를 추가하지 않은 실험구 보다 더 낮은 값을 나타내었다. 또한 phenol 종류 및 surfactant 농도별 hydroperoxide 생성억제 효과와 headspace aldehyde 생성 억제 효과는 BHT>procyanidin B3-3-O-gallate>(+)-gallocatechin>(+)-catechin 및 2%>1%>0% surfactant 첨가의 순서로 나타났다. 이러한 결과는 phenol성 물질과 과량의 surfactant micelle에 의해 emulsion으로부터 continuous phase로 hydroperoxide의 physical location 변화가 발생하는 것을 나타낸다.

Degradation of Phenol with Fenton-like Treatment by Using Heterogeneous Catalyst (Modified Iron Oxide) and Hydrogen Peroxide

  • Lee, Si-hoon;Oh, Joo-yub;Park, Yoon-chang
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.489-494
    • /
    • 2006
  • Goethite, hematite, magnetite and synthesized iron oxide are used as catalysts for Fenton-type oxidation of phenol. The synthesized iron oxides were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The catalytic activity of these materials is classified according to the observed rate of phenol oxidation. The effectiveness of the catalysts followed the sequence: ferrous ion > synthesized iron oxide >> magnetite hematite > goethite. According to these results, the most effective iron oxide catalyst had the structure similar to natural hematite. The surface oxidation state of the catalyst was between magnetite and hematite (+2.5 ~ +3.0). Phenol degraded completely in 40 min at neutral pH (pH = 7). Soluble ferric and ferrous ions were not detected in the filtrate from Fenton reaction solution by AAS. The formation of hydroxyl radicals was confirmed by EPR.