• Title/Summary/Keyword: Phenol adsorption

Search Result 91, Processing Time 0.027 seconds

Ethylene gas adsorption capacity and preserving effect of fruit freshness of Charcoal-fiberboard by wet forming process (습식공법으로 제조한 목탄-목재섬유복합재료의 에틸렌가스 흡착력과 과일 신선도 유지 효과)

  • Lee Hwa Hyoung;Kim Gwan Eui
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This research was carried out for packing materials and building materials to examine thylene gas adsorption and effect of keeping fruit fresh of wet formed charcoal-fiber mposite made from defibrated fiber of Pinus densiflora Sieb. et Zucc. and white charcoal from uercus variabilis Bl.(wood fiber: charcoal=8:2, 6:4, 4:6, 2:8), with/without phenol formaldehyde resin(PF, Non volatile content:$52\%$, resin content $1,3,5\%$). The results are summarized as follows: 1. The higher the charcoal content, the more the ethylene gas adsorption. At the same mixing ratio of fiber to charcoal, $\#100-200$ of charcoal particle size gave the better reslts than $\#60-100$. 2. Adding PF into the charcoal fiber composite decreased the capacity of ethylene gas adsorption but there was no significant difference until $5\%$ adding amount of PF. 3. For keeping fruit fresh for a long time, Charcoal fiber composite was $66\%$ longer than control. The higher the white charcoal content, the longer fresh time.

  • PDF

Treatment of Heavy Metals and Phenol in Contaminated Soil Using Direct Current and Pulse Voltage (직류 전원과 펄스 전원을 이용하여 오염된 토양에서의 중금속과 페놀 처리)

  • Choi, Changsik;Hong, Bumeui;Choi, Hee Young;Lee, Eunsil;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.606-611
    • /
    • 2016
  • In this work, the treatment of heavy metals and phenol in the contaminated soil was investigated by applying direct current (DC) and pulse voltage. When the DC was used, the removal efficiencies for Cu, Zn, As, and Pb were 73, 88, 10, and 10%, respectively, and more than 95% for phenol was removed. Furthermore, when a pulse voltage was employed the removal efficiencies for Cu, Zn, As, and Pb were 88, 92, 40, and 40%, respectively, and 87% of phenol was removed. The results indicate that the application of a pulse voltage for the treatment of contaminated soil reduced electro-osmosis, but increased the rate of electric current movement of heavy metals. In addition, the removal efficiencies for As and Pb have been improved due to the enhanced adsorption capacity of clay components in the soil. Therefore, these experimental results could be effectively applied in remediation technology for the treatment of various heavy metals and phenol.

Regeneration of TS-1 Catalyst During Phenol Hydroxylation(Calcination temperature dependence) (페놀의 수산화 반응에 사용한 TS-1 촉매의 효과적인 재생 방법(소성 온도 의존성))

  • Kwon, Song Yi;Yoon, Songhun;Um, Kyung Sub;Lee, Jae Wook;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.679-683
    • /
    • 2010
  • In this study, calcination temperature dependence of TS-1 catalyst was investigated in the hydroxylation of phenol with hydrogen peroxide during the regeneration of catalyst. Catalyst was regenerated 5 times by calcining at $550^{\circ}C$ and $700^{\circ}C$, respectively. When the catalyst was regenerated at $550^{\circ}C$ after 5th regeneration phenol conversion was decreased from 22.9% to 15.1% and at $700^{\circ}C$ after 5th regeneration phenol conversion was decreased from 22.9% to 18.8%. For formation ratio of catechol/hydroquinone was increased from 1.28 to 1.45 after 5th regeneration at $550^{\circ}C$, and from 1.28 to 1.20 after 5th regeneration at $700^{\circ}C$. The main reasons for deactivation of the catalyst were suggested by analyzing chemical/physical properties with XRD, UV-vis spectra, $N_2$ adsorption/desorption and TGA, and evaluating the catalytic activity such as phenol conversion and product selectivity.

Synthesis, Characterization, and Catalytic Applications of Fe-MCM-41 (Fe-MCM-41의 제조, 물성조사 및 촉매적 응용 연구)

  • Yoon, Sang Soon;Choi, Jung Sik;Choi, Hyeong Jin;Ahn, Wha Seung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.215-221
    • /
    • 2005
  • A Fe-containing mesoporous silica (Fe-MCM-41) in which part of Si in the framework was replaced by Fe(Si-O-Fe) has been successfully prepared using $Fe^{3+}$ salt by a direct synthesis route. Physical properties of the material were characterized by XRD, $N_2$ adsorption, SEM/TEM, UV-vis and FT-IR spectroscopies. Fe-MCM-41 exhibited high catalytic activity in phenol hydroxylation using $H_2O_2$ as oxidant, giving phenol conversion of ca. 60% at $50^{\circ}C$ [phenol : $H_2O_2$ = 1:1, water solvent]. Fe-MCM-41 was also applied to the growth of CNTs, utilizing a thermal-CVD reactor using acetylene gas, which demonstrated that multi-wall CNTs could be prepared efficiently using the Fe-MCM-41 catalyst.

Degradation of Phenolic Compounds in a Slurry Reactor (슬러리 반응기를 이용한 페놀류 화합물의 분해거동)

  • Lee, Jamyoung;Jung, Yonkyu;Lee, Taejin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.949-957
    • /
    • 2000
  • This study investigates the remediation of the phenol or PNP(p-Nitrophenol) contaminated soils in a slurry reactor by a pure culture, P-99. The application of a pure culture for the phenol decontamination make the degradation rate three times faster than that of the mixed activated sludge. The destruction of 300 mg/L phenol was completed in 26 hours. As 1 mg of phenol was added, 0.1457 mg of microorganism was grown in the medium. The pure culture could not utilizes PNP, one of the xenobiotics, as a growth substrate. When the bacteria was induced by phenol enrichment medium. PNP could be effectively transformed with cometabolic process. The induction of the bacteria requires 1 mg of phenol for the destruction of 0.027 mg PNP. When PNP concentration in the medium contained phenol and PNP increased. the degradation rate of phenol was decreased. The degradation rate of phenol and PNP in the slurry reactor was about two times faster than in the reactor without slurry because of higher dissolved oxygen supply in the aqueous phase and adsorption on the surface of the soil.

  • PDF

Adsorption Characteristics of Reverse Stratified Tapered Adsorber (역층상 점증형 흡착탑에서의 흡착특성)

  • Lee, Seung-Mok;Kim, Dae-Hyun;Lee, II-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1861-1867
    • /
    • 2000
  • Granular activated carbon(GAC) adsorption is one of the best available technology to remove synthetic organic chemicals(SOCs) from water supplies and wastewater. In order to satisfy enviromental criteria and reduce GAC treatment cost, optimal study of reverse stratified tapered adsorber(RSTA) has been conducted. The RSTA was found to provide on increase in breakthrough time when compared to a conventional cylindrical adsorber(CA). Through the RSTA optimal experiment, optimal mean bed velocity was decided 19.10cm/min and optimal angle was decided RSTA($3.0^{\circ}$). Adsorption efficiency was increased with increasing activated carbon doses and the number of activated carbon layers.

  • PDF

A Study on Treatment of Livestock wastewater using Fenton Oxidation and Zeolite Adsorption Process (Fenton 산화공정과 Zeolite 흡착공정을 연계한 축산폐수처리에 관한 연구)

  • Cho, Chang-Woo;Kim, Youn-Jeong;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.505-510
    • /
    • 2005
  • The objective of this study was to remove non-biodegradable matters and ammonia ion in livestock wastewater using Fenton oxidation and Zeolite adsorption process. After coagulation process as 1st treatment, non-biodegradable matters remained after 1st treatment were removed by using OH radical produced in Fenton oxidation process. Zeolite as cation adsoption process was used to remove ammonia ion in 2nd treatment water. As a result of treatment using these processes, NBDCOD removal efficiency was over 90% and ammonia ion was almost removed. Most aromatics or polynuclear aromatics like benzene, phenol and scatol in livestock wastewater wasn't detected after Fenton oxidation process.

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

A Study on Removal Efficiency of VOCs using Vortex Cyclones (보텍스 사이클론을 이용한 VOCs 제거효율에 관한 연구)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-199
    • /
    • 2005
  • The principle of vortex cyclone was applied to enhance the treatment efficiency of waste air streams containing particulate matters, phenol, and others. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by Joule-Thomson expansion as the pressurized air and pulverized activated carbon were introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube of vortex cyclone. Easily condensible vapors were adsorbed and/or condensed forcibly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves or on pulverized activated carbons. These types of coagulation or condensation rates were rapidly promoted by increase in their diameter. The maximum removal efficiency obtained from this experiment for the removal of carbon dioxide and phenol was about 87.3 and 93.8 percent, respectively. Phenol removal efficiency was increased with the relative humidities and enhanced by pulverized activated carbon added. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 50%. It is believed that the moisture, particulate matters, and the pressure of the process air introduced could control the removal efficiency of VOCs.