• Title/Summary/Keyword: Phenanthroline

Search Result 222, Processing Time 0.027 seconds

Voltammetric Study of Surfactant-Modified Carbon Electrode: $Ru(ph){_3}^{2+}$ in Sodium Dodecyl Sulfate Solution

  • Ko, Young Chun;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.643-648
    • /
    • 1995
  • Cyclic voltammetric method is used to survey microscopic environments which take place at the surfactant-modified carbon electrode when the hydrophobic and hydrophilic environments of $Ru(ph){_3}^{2+}$(tris 1,10-phenanthroline ruthenium(II) chloride) is created by the addition of anionic surfactant, sodium dodecyl sulfate(SDS). Critical micelle concentration(CMC) of SDS in $Ru(ph){_3}^{2+}$ measured by cyclic voltammetry(CV) is in aggrement with that by surface tensiometry. Influence of the concentration of supporting electrolyte at surfactant-modified carbon electrode is investigated.

  • PDF

Synthesis and Crystal Structures of Mn(II)- and Ni(II)-Dicarboxylate Complexes with 1,10-Phenanthroline

  • Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2299-2304
    • /
    • 2012
  • Two new metal(II) complexes, $[Mn(dpa)(phen)(H_2O)_2]_n$ (1) ($H_2dpa$ = dephenic acid, phen = 1,10-phenanthroline) and $[Ni_2(nda)(phen)_2(H_2O)_6](nda)(H_2O)$ (2) ($H_2nda$ = 2,6-naphthalenedicarboxylic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. In complex 1, Mn(II) ion is six-coordinated, and Mn(II) ions are bridged by dpa ligands into 1D chains. While, the complex 2 is dimer and two Ni(II) ions are bridged by one nda ligand cooperated with the terminal ligand phen. In each complex, the dicarboxylate ligand is coordinated to metal(II) ions as a bis-monodentate.

Binding Mode of [Ruthenium(II)$(1,10-Phenanthroline)_2L]^{2+}\;to\;Poly(dG){\cdot}poly( dC){\cdot}poly(dC)^+$ Triplex DNA

  • Jo, Chang Beom;Jo, Tae Seop;Kim, Bok Jo;Han, Seong Uk;Jeong, Maeng Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1052-1054
    • /
    • 2000
  • Binding geometries of $[Ru(II)(110-phenanthroline)_2L]^2+$, complexes (where L = dipyrido [3,2-a:2',3'-c]phena-zine (DPPZ) or benzodipyrido[3,2-a:2',3'-c] phenazine (BDPPZ)) to poly(dG)${\cdot}$poly(dC)${\cdot}$poly(dC) + triplex DNA (CGC + triplex) has been investigated by linear dichroism and normal absorption spectroscopy. Analysis of the linear dichroism for the CGC+ triplex and $[Ru(II)(phen)_2BDPPZ]^2+$ complex indicates that the extended ligand of the metal complex lie perpendicular to the polynucleotide helix axis. Together with strong hypochromism and red shift in the interligand absorption region, we concluded that the extended BDPPZ or DPPZ ligand in-tercalated between the bases of polynucleotide. The spectral properties of the metal complexes bound to CGC+ triplex are similar to those bound to $poly(dA)[poly(dT)]^2$ triplex (Choi et al., Biochemistry 1997, 36, 214), sug-gesting that the metal complex is located in the minor groove of the CGC+ triplex.

In Vitro Antifungal Activity of (1)-N-2-Methoxybenzyl-1,10-phenanthrolinium Bromide against Candida albicans and Its Effects on Membrane Integrity

  • Setiawati, Setiawati;Nuryastuti, Titik;Ngatidjan, Ngatidjan;Mustofa, Mustofa;Jumina, Jumina;Fitriastuti, Dhina
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Metal-based drugs, such as 1,10-phenanthroline, have demonstrated anticancer, antifungal and antiplasmodium activities. One of the 1,10-phenanthroline derivatives compounds (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide (FEN), which has been demonstrated an inhibitory effect on the growth of Candida spp. This study aimed to explore the in vitro antifungal activity of FEN and its effect on the membrane integrity of Candida albicans. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of FEN against planktonic C. albicans cells were determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. Cell membrane integrity was determined with the propidium iodide assay using a flow cytometer and were visualized using scanning electron microscopy (SEM). Planktonic cells growth of C. albicans were inhibited by FEN, with an MIC of $0.39-1.56{\mu}g/mL$ and a MFC that ranged from 3.125 to $100{\mu}g/mL$. When C. albicans was exposed to FEN, the uptake of propidium iodide was increased, which indicated that membrane disruption is the probable mode of action of this compound. There was cells surface changes of C. albicans when observed under SEM.

Platelet-Activating Factor Enhances Experimental Pulmonary Metastasis of Murine Sarcoma Cells by Up-regulation of Matrix Metalloproteinases-9 Through NF-$\kappa$B-Dependent Pathway

  • Ko, Hyun-Mi;Back, Hae-Kyong
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.143-151
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, a process that is necessary for angiogenesis, tumor invasion and metastasis. Platelet-activating factor (PAP) increases angiogenesis, tumor growth and metastasis through nuclear factor (NF)-$\kappa$B activation. Based on these facts, the involvement of MMPs in PAF-induced pulmonary metastasis was investigated in murine sarcoma cells, MMSV-BALB/3T3. Messenger RNA expression and enzymatic activity of MMP-9 were assessed by RT-PCR and zymography, and cell migration and metastasis were done for the detection of MMP-9 functional activity. PAP induced mRNA expression and enzymatic activity of MMP-9, and its effects were either inhibited by the PAP antagonist, WEB 2170 or by the NF-$\kappa$B inhibitor, parthenolide, or p65 antisense oligonucleotide in a dose-dependent manner. In addition, PAF induced promoter activity of MMP-9, which was inhibited by WEB 2170, phenanthroline, NAC, PDTC. These results indicate that PAF induces mRNA expression and enzymatic activity of MMP-9 in NF-$\kappa$B dependent manner. Cell migration assay showed that PAF induced MMSV-BALB/3T3 migration, and its effect was significantly inhibited by treatment with phenanthroline. PAF enhanced pulmonary metastasis of murine sarcoma cells, MMSV-BALB/3T3 was also reduced by phenanthroline. These results suggest that PAF-enhanced cell migration and pulmonary metastasis is mediated through the expression of MMP. In conclusion, It is suggested that PAF enhances pulmonary metastasis by inducing MMP-9 expression via the activation of NF-$\kappa$B.

  • PDF

DNA Mediated Energy Transfer from 4',6-Diamidino-2-phenylindole to Ru(II)[(1,10-phenanthroline)2L]2+ : Effect of Ligand Structure

  • Youn, Mi-Ryung;Moon, Seok-Joon;Lee, Bae-Wook;Lee, Dong-Jin;Kim, Jong-Moon;Kim, Seog-K.;Lee, Chong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.537-542
    • /
    • 2005
  • It was proposed that Ru(II)[(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine ([Ru(phen)$_2$DPPZ]$^{2+}$)complexes and 4',6-diamidino-2-phenylindole (DAPI) simultaneously bind to poly[d(A-T)$_2$] (Biophysics. J. 2003, 85, 3865). Förster type resonance energy transfer from excited DAPI to [Ru(phen)2DPPZ]$^{2+}$ complexes was observed. In this study, we synthesized $\Delta$- and $\wedge$-[Ru(phenanthroline)$_2$dipyrido[3,2-a:2’3’c]6-azaphenazine] ([Ru(phen)$_2$DPAPZ]$^{2+}$) at which the DNA intercalating ligand DPPZ was replaced and we studied its binding properties to poly[d(A-T)$_2$] in the presence and absence of DAPI using polarized spectroscopy and fluorescence techniques. All the spectroscopic properties of the [Ru(phen)$_2$DPAPZ]$^{2+}$-poly[d(A-T)$_2$] complex were the same in the presence and absence of DAPI that blocks the minor groove of polynucleotide, suggesting both $\Delta$- and $\wedge$-[Ru(phen)$_2$DPAPZ]$^{2+}$ complexes are located at the major groove of poly[d(A-T)2]. On the other hand, in contrast with [Ru(phen)$_2$DPPZ]$^{2+}$, both $\Delta$- and $\wedge$-[Ru(phen)$_2$DPAPZ]$^{2+}$ exhibited almost twice the efficiency in the fluorescence quenching of DAPI that binds at the minor groove of poly[d(A-T)$_2$]. This observation indicates that the efficiency of the Förster type resonance energy transfer can be controlled by a small change in the chemical structure of the intercalated ligand.

Crystal Structure, Fluorescence Property and Theoretical Calculation of the Zn(II) Complex with o-Aminobenzoic Acid and 1,10-Phenanthroline

  • Zhang, Zhongyu;Bi, Caifeng;Fan, Yuhua;Zhang, Xia;Zhang, Nan;Yan, Xingchen;Zuo, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1697-1702
    • /
    • 2014
  • A novel complex [$Zn(phen)(o-AB)_2$] [phen: 1,10-phenanthroline o-AB: o-aminobenzoic acid] was synthesized and characterized by elemental analysis and X-ray diffraction single-crystal analysis. The crystal crystallizes in monoclinic, space group P2(1)/c with $a=7.6397(6){\AA}$, $b=16.8761(18){\AA}$, $c=17.7713(19){\AA}$, ${\alpha}=90^{\circ}$, ${\beta}=98.9570(10)^{\circ}$, ${\gamma}=90^{\circ}$, $V=2.2633(4)nm^3$, Z = 4, F(000) = 1064, S = 1.058, $Dc=1.520g{\cdot}cm^{-3}$, $R_1=0.0412$, $wR_2=0.0948$, ${\mu}=1.128mm^{-1}$. The Zn(II) is six coordinated by two nitrogen and four oxygen atoms from the 1,10-phenanthroline and o-aminobenzoic acid to furnish a distorted octahedron geometry. The complex exhibits intense fluorescence at room temperature. Theoretical studies of the title complex were carried out by density functional theory (DFT) B3LYP method. CCDC: 898291.