• 제목/요약/키워드: Phenanthroline

검색결과 222건 처리시간 0.025초

Oxovanadium(IV) Complexes Containing VO(ONS) Basic Core: Synthesis, Structure, and Spectroscopic Properties

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.72-76
    • /
    • 2005
  • Some mononuclear oxovanadium(IV) complexes having the general formula [VOL(bidentate)] (1-4) of which L is tridentate ONS-donor salicylaldehyde S-methyldithiocarbazate (sal-mdtc$^{2-}$) or salicylaldehyde 4- phenylthiosemicarbazate (sal-phtsc$^{2-}$) and bidentate stands for 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized. The complexes were characterized by elemental analyses, FAB mass, UV, IR spectroscopy, and cyclic voltammetry. Two of the complexes [VO(sal-mdtc)(bpy)] (1) and [VO(sal-mdtc) (phen)] (2) were crystallographically characterized. The structures revealed that vanadium atom is octahedrally coordinated by the O, N, and S donor atoms of the tridentate ligand, the two N atoms of bidentate ligand, and the oxo atom. The oxygen donor, occupying an apical position has a trans-labilizing effect, resulting in elongation of the V-N bond. The cyclic voltammograms of the complexes exhibited one cathodic response in the range −d1.45 $\sim$ −f1.52 V due to the reduction of V(IV) to V(III).

Effect of t-butylhydroperoxide on $Na^+-dependent$ Glutamate Uptake in Rabbit Brain Synaptosome

  • Lee, Hyun-Je;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.367-376
    • /
    • 1997
  • The effect of an organic peroxide, t-butylhydroperoxide (t-BHP), on glutamate uptake was studied in synaptosomes prepared from cerebral cortex. t-BHP inhibited the $Na^+-dependent$ glutamate uptake with no change in the $Na^+-independent$ uptake. This effect of t-BHP was not altered by addition of $Ca^{2+}$ channel blockers (verapamil, diltiazem and nifedipine) or $PLA_2$ inhibitors (dibucaine, butacaine and quinacrine). However, the effect was prevented by iron chelators (deferoxamine and phenanthroline) and phenolic antioxidants (N,N'-diphenyl-phenylenediamine, butylated hydroxyanisole, and butylated hydroxytoluene). At low concentrations (<1.0 mM), t-BHP inhibited glutamate uptake without altering lipid peroxidation. Moreover, a large increase in lipid peroxidation by $ascorbate/Fe^{2+}$ was not accompanied by an inhibition of glutamate uptake. The impairment of glutamate uptake by t-BHP was not intimately related to the change in $Na^+-K+-ATPase$ activity. These results suggest that inhibition of glutamate uptake by t-BHP is not totally mediated by peroxidation of membrane lipid, but is associated with direct interactions of glutamate transport proteins with t-BHP metabolites. The $Ca^{2+}$ influx through $Ca^{2+}$ channel or $PLA_2$ activation may not be involved in the t-BHP inhibition of glutamate transport.

  • PDF

Inhibitory Effect of Ruta chalepensis Leaf-Derived Component against Alcohol Dehydrogenase

  • Jeon, Ju-Hyun;Cho, Jang-Hee;Kim, Hyo-Gyung;Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.832-835
    • /
    • 2005
  • Inhibitory activity of active compound isolated from Ruta chalepensis leaf was examined against alcohol dehydrogenase and, upon comparison to those of four commercially available compounds (quinoline, quinoline-3-carboxaldehyde, quinoline-3-carboxylic acid, and quinoline-4-carboxylic acid) and 1,10-phenanthroline as alcohol dehydrogenase inhibitor, was characterized as quinoline-4-caboxaldehyde by spectral analyses. Inhibitory effects ($IC_{50}$) of quinoline-4-caboxaldehyde and quinoline derivatives varied depending on chemicals and concentrations used. The $IC_{50}$ values of quinoline-4-carboxaldehyde, quinoline-3-carboxaldehyde, quinoline, quinoline-3-carboxylic acid, and quinoline-4-carboxylic acid were 0.04, 0.3, 0.8, >1, and >1 mg/mL, respectively. These results suggest inhibitory action of quinoline-4-carboxaldehyde against alcohol dehydrogenase as prospective therapeutics for treatment of alcoholic liver diseases such as alcohol hepatitis and cirrhosis resulting from chronic alcohol abuse.

인광 물질 $Ir(ppy)_3$를 mCP와 TPBi 혼합 호스트에 도핑하여 인광 유기발광소자의 전하 주입 메커니즘

  • 김정화;김대훈;김태환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.473-473
    • /
    • 2012
  • 유기발광소자는 낮은 구동전압, 빠른 응답속도, 넓은 시야각 등의 장점으로 소형 디스플레이에 사용되며 차세대 조명으로 관심을 받고 있다. 고효율의 유기발광소자를 제작하기 위해서 다양한 유기 인광물질 합성 및 연구가 진행되고 있으며, 다양한 호스트 물질을 사용하여 전자와 정공의 주입을 향상하여 고효율의 인광 유기발광소자를 제작하였다. 본 논문에서는 발광층에 N,N'-dicarbazolyl-3,5-benzene (mCP)와 1,3,5-tri(phenyl-2-benzimidazole)-benzene (TPBi)를 혼합 호스트로 사용하였으며 tris(2-phenylpyridine)iridium ($Ir(ppy)_3$)청색 인광물질을 도핑하여 고효율의 인광 유기발광소자를 제작하였다. 유기발광소자의 발광층에 단일 호스트와 혼합 호스트의 전기적 및 광학적 특성을 비교 분석하여 전자 및 정공 수송 메커니즘을 규명하였다. 혼합 호스트 TPBi의 lowest unoccupied molecular orbital (LUMO) 준위와 엑시톤 저지층 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)의 LUMO 준위와 비슷하여 전자의 주입을 향상시키는 역할을 하며, 다른 혼합 호스트 mCP는 highest occupied molecular orbital (HOMO)와 정공수송층 N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB)의 HOMO와 비슷하여 정공의 주입을 향상시키는 역할을 하여, $Ir(ppy)_3$에 전자와 정공의 주입이 향상되어 고 효율의 인광 유기발광소자를 제작할 수 있었다. 이와 같은 실험결과는 인광 유기발광소자의 호스트 물질에 따른 전하주입 메커니즘을 설명 하였으며 고효율의 인광 유기발광소자 제작에 도움을 줄 것이다.

  • PDF

Rubrene 발광층을 가진 유기발광소자의 전자 포획 메커니즘

  • 권원주;전영표;박성수;김태환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.474-474
    • /
    • 2012
  • 유기발광소자는 다른 디스플레이에 비해 높은 명암비와 색재현성의 장점을 갖는 차세대 디스플레이로서, 얇은 박막 특성을 가지고 있기때문에 모바일용 디스플레이 기술로 많이 사용되고 있다. 하지만 낮은 발광효율, 높은 구동전압 및 전압에 따른 색좌표 변화의 문제점을 가지고 있어 이를 극복하기 위한 많은 연구가 진행되고 있다. 유기 발광 소자의 발광효율을 높이며 구동 전압을 낮추기 위해 호스트물질에 다양한 도펀트를 도핑하고 있다. 높은 발광효율을 가지는 도펀트인 5,6,11,12-tetraphenylnaphthacene (rubrene)을 사용한 유기발광소자는 rubrene의 안정된 분자 에너지 레벨로 인해 전자들이 포획되는 현상이 나타나 효율이 감소되는 원인이 규명되지 않았다. 본 연구에서는 rubrene을 발광층으로 사용하여, 전공수송층인 N,N_-bis-(1-naphthyl)-N,N_-diphenyl-1,1-biphenyl-4,4-diamine (NPB)의 두께에 따른 I-V 변화와 전계발광 스펙트럼를 분석하여 두께에 따른 rubrene의 전자 포획를 관찰하였다. rubrene보다 큰 lowest unoccupied molecular orbital 에너지를 갖는 NPB와 에너지장벽으로 낮은 highest occupied molecular orbital 에너지를 갖는 4,7-diphenyl-1,10-phenanthroline을 각각 교차되게 적층한 유기발광소자의 I-V 변화와 전자 전공 재결합층의 위치변화에 따른 전계발광 스펙트럼을 비교 분석하였다. 이 결과는 발광층 내부의 rubrene의 상대적인 위치와 에너지장벽과의 상관관계에 따른 전자 포획 메커니즘을 이해하는데 도움 줄 것이다.

  • PDF

Characterization of the Proteolytic Activity of Bacteria Isolated from a Rotating Biological Contactor

  • In Jae park;Yoon, Jerng-Chang;Park, Seong-Joo;Kim, Eung-Ho;Cho, Yeon-Jae;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • 제41권2호
    • /
    • pp.73-77
    • /
    • 2003
  • Four proteolytic bacteria were isolated and identified from a rotating biological contactor based on Bacillus. The four isolates, Ni 26, 36, 39 and 49 were identified as B. vallismortis, B. subtilis, Aeromonas hydrophila and B. amyioliquefaciens, respectively, based on their biochemical properties and 16S rDNA sequence analyses. The optimal proteolytic activity was observed in the temperature and pH ranges of 40-70$^{\circ}C$ and 8.0-8.5, respectively. The proteolytic activities of all the isolates were partially inhibited by phenylmethylsulfonylfluoride (PMSF), and the isolates Ni 26, Ni 39 and Ni 49 were inhibited by the metalloprotease inhibitor, 1,10-phenanthroline. Zymographic analyses of the culture supernatants revealed the presence of at least two pretenses in all isolates.

생물공정 모니터링을 위한 광섬유 포도당 및 젖산 센서의 개발 (Development of Optical Fiber Glucose and Lactate Biosensors for Bioprocess Monitoring)

  • 정창환;손옥재;이종일
    • KSBB Journal
    • /
    • 제32권1호
    • /
    • pp.35-45
    • /
    • 2017
  • In this work the optical fiber glucose and lactate biosensors were developed by using fluorescent dye and enzyme immobilized on the end tip of an optical fiber. 3-Glycidyloxypropyl)methyldiethoxysilane (GPTMS), (3-Aminopropyl) trimethoxysilane (APTMS) and Methyltrimethoxysilane (MTMS) were used to immobilize glucose oxidase (GOD), lactate oxidase (LOD) and ruthenium(II) complex (tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II), $Ru(dpp)_3^{2+}$) as oxygen sensitive fluorescent dye. MTMS sol-gel was an excellent supporting material for the immobilization of $Ru(dpp)_3^{2+}$, GOD, and LOD on the optical fiber. Storage stability of the optical fiber glucose sensor was kept constant over 20 days, while the optical fiber lactate sensor had constant storage stability over 17 days. The optical fiber glucose and lactate biosensors also maintained good operational stability for 20 hours and 14 hours, respectively. The activities of the immobilized enzymes were most excellent at pH 7 and at $25^{\circ}C$. On-line monitoring of glucose and lactate in a simulated process was performed with the optical fiber glucose and lactate biosensors. On-line monitoring results were agreed with those of off-line data measured with high performance liquid chromatography (HPLC).

Zn-complex를 이용한 OLED 효율향상에 관한 연구 (A Study on the efficiency improvement of OLED using Zn-Complex)

  • 장윤기;김병상;이범종;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.23-24
    • /
    • 2006
  • We have synthesized electroluminescence materials. including [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB)$_2$), [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q) and [(1, 10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q. The ionization potential (IP) and electron affinity (EA) of each Zn-complex was measured using cyclic-voltammetry (C-V). Basing on the consideration of matched in the energy levels of the materials. We investigated the electron transporting properties of Zn(HPB)q and Zn(phen)q compared with $Alq_3$, and also we investigated the hole blocking properties of Zn(HPB)$_2$, compared with BCP. As a result, we used Zn-complex to enhance the performance of OLED. Therefore, we demonstrate that Zn(HPB)q and Zn(phen)q are useful as an electron transporting material. Zn(HPB)$_2$ is also good a hole blocking material.

  • PDF

Synthesis and Application of New Ru(II) Complexes for Dye-Sensitized Nanocrystalline TiO2 Solar Cells

  • Seok, Won-K.;Gupta, A.K.;Roh, Seung-Jae;Lee, Won-Joo;Han, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1311-1316
    • /
    • 2007
  • To develop photo-sensitizers for dye-sensitized solar cells (DSCs) used in harvesting sunlight and transferring solar energy into electricity, we synthesize novel Ru(II) polypyridyl dyes and describe their characterization. We also investigate the photo-electrochemical properties of DSCs using these sensitizers. New dyes contain chromophore unit of dafo (4,5-diazafluoren-9-one) or phen-dione (1,10-phenanthroline-5,6-dione) instead of the nonchromophoric donor unit of thiocyanato ligand in cis-[RuII(dcbpy)2(NCS)2] (dcbpy = 4,4'-dicarboxy- 2,2'-bipyridine) coded as N3 dye. For example, the photovoltaic data of DSCs using [RuII(dcbpy)2(dafo)](CN)2 as a sensitizer show 6.85 mA/cm2, 0.70 V, 0.58 and 2.82% in short-circuit current (Jsc ), open-circuit voltage (Voc), fill factor (FF) and power conversion efficiency (Eff), which can be compared with those of 7.90 mA/ cm2, 0.70 V, 0.53 and 3.03% for N3 dye. With the same chelating ligand directly bonded to the Ru metal in the complex, the CN ligand increases the Jsc value by double, compared to the SCN ligand. The extra binding ability in these new dyes makes them more resistant against ligand loss and photo-induced isomerization within octahedral geometry.

Direction of Intercalation of a bis-Ru(II) Complex to DNA Probed by a Minor Groove Binding Molecule 4',6-Diamidino-2-phenylindole

  • Jang, Yoon Jung;Kim, Raeyeong;Chitrapriya, Nataraj;Han, Sung Wook;Kim, Seog K.;Bae, Inho
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2895-2899
    • /
    • 2013
  • Direction of intercalation to DNA of the planar dipyrido[3,2-a:2',3'-c]phenazine ligands (dppz) of a bis-Ru(II) complex namely, $[Ru(1,10-phenanthroline)_2dipyrido[3,2-a:2^{\prime},3^{\prime}-c]phenazine]^{2+}$ linkered by a 1,3-bis(4-pyridyl)propane, was investigated by probing the behavior of 4',6-diamidino-2-phenylindole (DAPI) that bound deep in the minor groove. Bis-intercalation of DPPZ resulted in a little blue shift and hyperchromism in DAPI absorption band, and a large decrease in DAPI fluorescence intensity which accompined by an increase in the dppz emission intensity. Diminishing the intenisty of the positive induced circular dichroism (CD) and linear dichroism (LD) were also observed. These spectral changes indicated that insertion of dppz ligand caused the change of the binding mode of DAPI, which probably moved to the exterior of DNA from the minor groove and interacted with the phospghate groups of DNA by electrostatic interaction. At the surface of DNA, DAPI binds at the phosphate groups of DNA by electrostatic attraction. Consequently, this observation indicated that the dppz ligand intercalated from the minor groove.