• Title/Summary/Keyword: Phased array ultrasonic

Search Result 67, Processing Time 0.023 seconds

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

Evaluation of the Integrity of TIG Welding Using Non-Contact SH-EMAT (비접촉 SH-EMAT을 이용한 TIG용접부 건전성 평가)

  • Park, Tae Sung;Park, Yeong Hwan;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2016
  • An EMAT can be used to reliably detect defects as it serves as a non-contact transducer with the ability to transmit ultrasonic waves into specimens without couplant. Moreover, an EMAT can easily generate desired waves by altering the design of the coil and magnet. This study proposes an SH-EMAT to evaluate the integrity of the TIG welding part. A stainless steel was welded using the TIG welding method. The welding current was varied to create artificial defects. Both the PA-UT and the RT were applied to verify the defect size. The experimental results generated by using the EMAT were compared with those methods. The amplitude was observed to decrease with an increase in the defect size. These results confirmed that the presence of defects can be reliably detected by attenuation of signal amplitude. The results demonstrated that the proposed method is suitable for evaluating the integrity of TIG welding.

The Utility of Phased Array Ultrasonic Testing(PAUT) for Corrosion Evaluation of Water Supply Steel Pipes (상수도 강관의 부식 평가에 대한 위상배열초음파(PAUT)의 활용)

  • Sang Hyeok Son;Chang Gun Shin;Jea Yeon Jeong;Jong Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.490-490
    • /
    • 2023
  • 위상배열초음파검사(PAUT)는 기존 초음파검사에서 획득할 수 있었던 A-scan의 결과와 달리, 관로 내부로 진입하지 않고도 부식에 의한 강관 손상 정도를 정량적인 시각적 데이터로 파악할 수 있는 검사 기술이다. 관내부 직접조사가 가능한 상수도 강관을 대상으로 직접조사와 PAUT를 비교한 결과, PAUT는 높은 정확도와 신뢰성을 보여주었다. 또한, 강관 내부의 부식검사에서는 PAUT를 적용함으로써 관체의 부식 면적, 부식 최대 깊이, 부식 위치를 넓은 범위에서 신뢰성 높은 검사 및 결과 도출이 가능하였다. 이러한 결과는 PAUT 기술이 강재 구조물의 다양한 부식 문제를 신속하게 파악하고 해결하는 데 기여할 수 있음을 의미한다. 따라서, 본 검사 기법은 상수도 관로의 강재 진단 및 점검에 있어 높은 신뢰성 및 효율성을 보여 주는 진단기법으로써 다양한 강재 시설물의 평가에 활용성이 클 것으로 판단된다. 이에 따라 PAUT는 상수도 시설물뿐만 아니라 다양한 시설물에서도 높은 활용 가능성을 가질 것으로 예상된다.

  • PDF

Evaluation of the seismic performance of butt-fusion joint in large diameter polyethylene pipelines by full-scale shaking table test

  • Jianfeng Shi;Ying Feng;Yangji Tao;Weican Guo;Riwu Yao;Jinyang Zheng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3342-3351
    • /
    • 2023
  • High-density polyethylene (HDPE) pipelines in nuclear power plants (NPPs) have to meet high requirements for seismic performance. HDPE pipes have been proved to have good seismic performance, but joints are the weak links in the pipelines, and pipeline failures usually initiate from the defects inside the joints. Limited data are available on the seismic performance of butt-fusion joints of HDPE pipelines in NPPs, especially in terms of defects changes inside the joints after earthquakes. In this paper, full-scale shaking table tests were performed on a test section of suspended HDPE pipelines in an NPP, which included straight pipes, elbows, and 10 butt-fusion joints. During the tests, the seismic load-induced strain of the joints was analyzed by strain gauges, and it was much smaller than the internal pressure and self-weight-induced strain. Before and after the shaking table tests, phased array ultrasonic testing (PA-UT) was conducted to detect defects inside the joints. The locations, numbers, and dimensions of the defects were analyzed. It was found that defects were more likely to occur in elbows joints. No new defect was observed after the shaking table tests, and the defects showed no significant growth, indicating the satisfactory seismic performance of the butt-fusion joints.

Preliminary PINC(Program for the Inspection of Nickel Alloy Components) RRT(Round Robin Test) - Pressurizer Dissimilar Metal Weld -

  • Kim, Kyung-Cho;Kang, Sung-Sik;Shin, Ho-Sang;Chung, Ku-Kab;Song, Myung-Ho;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.248-255
    • /
    • 2009
  • After several damages by PWSCC were found in the world, USNRC and PNNL(Pacific Northwest National Laboratory) started the research on PWSCC under the project name of PINC. The aim of the project was 1) to fabricate representative NDE mock-ups with flaws to simulate PWSCCs, 2) to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing PWSCCs, 3) to document the range of locations and morphologies of PWSCCs and 4) to incorporate results with other results of ongoing PWSCC research programs, as appropriate. Korea nuclear industries have also been participating in the project. Thermally and mechanically cracked-four mockups were prepared and phased array and manual ultrasonic testing(UT) techniques were applied. The results and lessons learned from the preliminary RRT are summarized as follows: 1) Korea RRT teams performed the RRT successfully. 2) Crack detection probability of the participating organizations was an average 87%, 80% and 80% respectively. 3) RMS error of the crack sizing showed comparatively good results. 4) The lessons learned may be helpful to perform the PINC RRT and PSI /ISI in Korea in the future.

The Theoretical Investigation of Phased Array Guided Waves (위상배열 유도초음파 검사의 이론적 고찰)

  • Lee, Jae-Sun;Cho, Youn-Ho;Achenbach, Jan D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.367-373
    • /
    • 2011
  • Guided waves inspection techniques that are different with inspection technique by bulk waves are widely used in pipe line evaluation due to advantages of long distance inspection. However, most of pipe lines at industrial fields are buried and/or coated. In this case, due to the attenuation effect from soil and/or coating material, there are a lot of difficulty on inspection by conventional ultrasonic technique. In this paper, guided waves propagating patterns are calculated with respect to excitation mode by Normal Mode Expansion(NME). Guided waves patterns based on excited by single transducer and guided wave focusing technique have employed to analyze focusing pattern on a pipe. A longitudinal mode and high order flexural modes are used with various number of transducers to determine sensitivity. Guided waves energy excited by multi transducer with focusing algorithm was successfully focused at a desired point.