• Title/Summary/Keyword: Phased Array Antenna

Search Result 228, Processing Time 0.022 seconds

Localization of Human Motion Using a 8×8 Phased Array Antenna (8×8 위상배열안테나를 이용한 위치추적 시스템)

  • Goh, Hoseok;Han, Heeje;Park, Soonwoo;Kim, Chan-woo;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1197-1201
    • /
    • 2018
  • In this paper, a Doppler radar for a localization of a human motion is demonstrated. In the system, we used a $8{\times}8$ phased array antenna using metamaterial phase shifters for easy and precise control of antenna beam pattern. Scanning area is a circular sector with an inscribed angle of $60^{\circ}$ and a diameter of 45m. This area is divided with 15 designated area and each area is scanned for 0.2 second. When there is a motion in a designated area, we are able to detect a frequency shift due to a Doppler effect. In this way it is possible to detect the location of motion. The experiment shows that 78% of position accuracy. The remaining 22% occurred the surroundings of the designated area.

The Design of Beam Forming Module for Active Phased Array Antenna System (능동위상배열안테나용 수신 빔 성형모듈 설계)

  • 정영배;엄순영;전순익;채종석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.118-122
    • /
    • 2002
  • This paper is concerned with the design of the beam forming module that is a key unit of the active phased array antenna(APAA) system for mobile satellite communications. This module includes two blocks for main signal and tracking signal. Main signal block has the role of transmitting input signal from phased away antenna to tracking signal block. And, tracking signal block executes main roles, beam forming of tracking signal and electronic beam control. The several electrical performances of this module, phase characteristics and linear gain, etc., agreed with specifications needed for APAA, and for more clear verification of the performances, the satellite communication test of the APAA including the modules was accomplished in the outdoors.

  • PDF

High Efficiency Tapered Waveguide Antenna for End-fire Optical Phased Array Device (종단방출형 광위상배열 장치를 위한 고효율 안테나)

  • Byeongchan Park;Nan Ei Yu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.235-240
    • /
    • 2023
  • The optical signal injected into an end-fire optical phased array propagates along the waveguides inside the device and is emitted from the edge of the antenna. In general, reflection and scattering occur at the boundary, thereby reducing the emission efficiency of the optical signal. In this article, we propose a silicon nitride (Si3N4) tapered waveguide antenna structure whose width is tapered toward the emitting edge, achieving high emission efficiency operating at the 1,550 nm wavelength. The Si3N4 tapered waveguide antenna was numerically designed using the 3D finite-difference time-domain method. The optical signal emission efficiency increased from 78% to 96.3%, while reflectance decreased from 22% to 3.7% compared with the untapered waveguide antenna counterpart. This result will not only boost the optical signal intensity but also mitigate optical noise resulting from back reflection along the waveguide in the end-fire optical phased array device.

Implementation and Verification for the Low RCS Characteristics of Active Phased Array Antenna (능동위상배열 안테나의 저피탐 특성 구현 및 검증)

  • Joung-Myoung Joo;;Heeduck Chae;Jongkuk Park;Young-Jo Choi;Hyeong-Ki Lee;Jeongyun Han;Jeong-Hwan Jeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • As the latest weapon systems and electronic equipments are increasingly demanding stealth technology to improve the survivability of allies, it is necessary to implement low-observability technology that reduces the radar cross section(RCS). In order to implement this stealth technology, a method for low RCS characteristics by applying a shape design or a electromagnetic wave absorber is widely used. However, active phased array antennas have structural limitations in shape design, also when a absorber is applied to it, the performance of the antenna is degraded. Therefore, in this paper, in order to realize the low RCS characteristics of the active phased array antenna operating in the X-band, individual radiating elements suitable for applying the radio wave absorber were selected, and a 13x13 array antenna was designed and manufactured. Next, by comparing the measured results of the relative RCS and electrical performance for the manufactured antenna according to the presence and type of the absorber, it is shown that the electrical performance is maintained at an equal or higher level while obtaining the low RCS characteristics. Thereby the method proposed in this paper for implementing the low RCS characteristics was validated. Finally, it was confirmed that when the wave absorber is applied to the array antenna, the limitation of its performance deterioration can be overcome.

A C-Band CMOS Bi-Directional T/R Chipset for Phased Array Antenna (위상 배열 안테나를 위한 C-대역 CMOS 양방향 T/R 칩셋)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.571-575
    • /
    • 2017
  • This paper presents a C-band bi-directional T/R chipset in $0.13{\mu}m$ TSMC CMOS technology for phased array antenna. The T/R chipset, which is a key component of phased array antenna, consists of a 6 bit phase shifter, a 6 bit step attenuator, and three bi-directional gain amplifiers. The phase shifter is controlled up to $354^{\circ}$ with $5.625^{\circ}$ phase step for precise beam steering. The step attenuator is also controlled up to 31.5 dB with 0.5 dB attenuation step for the side lobe level rejection. The LDO(Low Drop Output) regulator for stable 1.2 V DC power and the SPI(Serial Peripheral Interface) for digital control are integrated in the chipset. The chip size is $2.5{\times}1.5mm^2$ including pads.

Feedback Simplification Scheme for Wireless Power Transfer Systems Based on Beamforming with Phased Array Antenna (위상배열 안테나를 이용한 빔포밍 기반 무선전력전송 시스템의 피드백 간소화 기법)

  • Roh, Tae-Rae;Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.195-201
    • /
    • 2019
  • The effectiveness of the phased array antenna in wireless power transfer systems is due to its ability to form a beam pattern towards the desired direction. To maximize the efficiency of wireless power transfer through beamforming, the transmitter must recognize the information on the optimal transmission path. To achieve this, the transmitter usually transmits pilot signals periodically and the receiver extracts the optimal beamforming weights using the pilot signals. The receiver then feeds the beamforming weights back to the transmitter. In general, the amount of feedback increases with the number of antennas, which causes feedback overhead when there is a large number of antennas. In this paper, we propose a feedback simplification scheme based on the far-field approximation method. The simulation results are provided to validate the impact of the simplified feedback on the beam pattern.

Analysis of the Periodic Microstrip Phased Array Antenna (주기적 마이크로스트립 위상 배열의 특성 해석)

  • 조영수;김동현이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.335-338
    • /
    • 1998
  • This paper presents calculated results for the infinite phased arrays of the probe-fed rectagualr microstrip patches. A numerical model that is based on a rigorous Green's function and galerkin solutionsis is described. In an arbitrary scan plane, the input impedance and the input reflection coefficient versus the scand angle are calculated. The effects of substrate parameters on the phased arry antenna are considered. The scan blindness phenomenon due to the surface wave is observed and the input impedance bandwidth in the arbitrary scan plane is calculated.

  • PDF

Study on Nulling Antenna Using Genetic Algorithm with Opposite-Sign Phase (부호 교차 위상 개념이 적용된 유전 알고리즘을 이용한 널링 안테나 연구)

  • Lee, Yong-Jun;Seo, Jong-Woo;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.690-697
    • /
    • 2010
  • In this paper we propose an opposite-sign phase method to implement a nulling antenna using genetic algorithm. In the opposite-sign phase method the phase value of each antenna element in the linear phased array antenna is symmetrical to the center of the array and the sign of the phases of the neighboring elements is alternating. Compared to the conventional genetic algorithm our genetic algorithm shows the capability of synthesizing nulls faster and sharper.

Design of Ka-band Planar Active Phased Array Antenna (Ka밴드 평면형 능동위상배열 안테나장치 설계)

  • Han, Jae-Seob;Kim, Young-Wan;Baek, Jong-Gyun;Kim, Jong-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, we described the design of Ka-band planar active phased array antenna which is applicable for small RADAR for airborne and seeker of guided missile. The antenna consists of about 1000 array radiating elements and is designed to be within 200mm diameter. We optimized the spacing of radiating elements to allow beem steering above ${\pm}55$ degrees of Field of view, and analyzed the performance of antenna. We confirmed that the Effective Isotropic Radiated Power (EIRP) of the antenna can be 94.22 dBm and receive G/T can be 1.68 dB/k through the designs of RF components and the verification of RF budget. The TX output of TR Module is designed to be over 1.3W for EIRP, and Receive noise figure of TR Module is designed to be less than 5dB for G/T.

A Study on S-Band Phased Array Antenna System for Receiving LEO Satellite Telemetry Signals (저궤도 위성 원격측정데이터 신호 수신을 위한 S-대역 위상배열안테나 시스템 연구)

  • Lee, Dong-Hyo;Seo, Jung-Won;Lee, Myoung-Sin;Chung, Daewon;Lee, Dongkook;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2022
  • This paper presents a S-band phased array antenna system for receiving LEO satellite telemetry signals. The proposed antenna, which is performed to be beam-tiled along the elevation direction, consists of 16 sub-array assemblies, 16 active circuit modules, a perpendicular feed network and a control/power unit. In order to precisely track an LEO satellite, the developed antenna is placed with its elevation axis along the projected trajectory of the satellite on the earth. The center of antenna aperture is facing to the maximum elevation angle in the LEO trajectory. The beam-tilted angles for tracking LEO satellite are obtained by calculating accurately satellite points. Satellite tracking measurements are carried out in the range of ±30° with the respect to the maximum elevation angle. The S/N ratio of 16.5 dB and the Eb/No of 13.3 dB at the maximum elevation angle are obtained from the measurements. The measured result agrees well with the pre-analyzed system margin.