• Title/Summary/Keyword: PhaseField

Search Result 3,229, Processing Time 0.042 seconds

Four Quadrant Operations of DC Separately-Excited Motor by the Two Phase Chopper System with Combined Output (2상2중 쵸퍼방식에 의한 직류타여자전동기의 4상한동작)

  • 정연택;한경희;김용주;이승환;방이석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.349-356
    • /
    • 1990
  • In order to control DC motors for electric cars by chopper system, four quadrant operations - forward powering, forward regenerative braking, reverse powering, reverse regenerative braking - are needed. For the four quadrant operations, the separately - excited DC motors are used in this study. The conversion of each quadrant operation has been obtained by 1) adopting the two phase chopper system with combined output for the armature control, and 2) the single phase chopper system for the field control.

  • PDF

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.

Application of Preconditioning Method to Cavitating Flow Computation

  • Shin, Byeong-Rog
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1903-1908
    • /
    • 2004
  • A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference dual time-stepping integration procedure and the MUSCLTVD scheme. A homogeneous equilibrium cavitation model is used. The present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at low Mach number. Some internal flows such as convergent-divergent nozzles are computed using this method. Comparisons of predicted and experimental results are provided and discussed.

  • PDF

A Study on Development of New 3-Phase Open-Phase Protector used in Distribution Panel (새로운 분전반용 3상 결상보호기 개발에 관한 연구)

  • Kwak, D.K.;Kim, J.H.;Park, Y.J.;Jung, D.Y.;Kim, D.K.;Kim, P.R.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.546-547
    • /
    • 2012
  • In the three-phase power system using the three-phase load, when any one-phase is open-phase, the unbalanced current flows and the single-phase power supplied by power supply produces over-current. As a result, the enormous damage and electrical fire can be given to the power system. In order to improve these problems, this paper is proposed a new control circuit topology for open-phase protection using semiconductor devices. Therefore, the proposed open-phase protection device (OPPD) enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase distribution panel in the field, as it manufactures into small size and light weight. As a result, the proposed OPPD minimizes the electrical fire from open-phase, and contributes for the stable driving of the power system.

  • PDF

The Site Installation Test of Single-Phase MJ81 Switch Point Machine Localization (단상 MJ81 전기선로전환기 국산품의 현장설치시험)

  • Baek, Jong-Hyen;Kim, Yong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3632-3637
    • /
    • 2009
  • In this paper, we describe the performance results of the field installation test which is required to practicalize the single-phase MJ81 Switch Point Machine. This product has passed the certified test through performance improvement of driving parts in order to use 3 phase MJ81 Switch Point Machine, which is localized by taking over technology from Alstom and Cogifer when constructing Seoul-Busan rapid-transit railway, without change of the electrical equipment at track-side in domestic existing lines which single-phase 220V is used. KRRI and Samsung SDS have localized the single-phase MJ81 Switch Point Machine to improve the speed and safety of the conventional lines through the existing railway technology development project. For practicalization of this, we should, however, verify the performance through not only field installation test in real lines but also interface test with the interlocking. In this paper we verify the practicality of the domestic single-phase MJ81 Switch Point Machine through analysis on the performance result of the field installation test as well as the research contents for this test. Thereby, in Feb 2009 we have received an order from the Korea Rail Network Authority and are currently installing the single-phase MJ81 Switch Point Machine.

Partial Discharge Pattern Recognition using Neural Network (뉴우럴 네트워크에 의한 부분방전 패턴 인식)

  • Lee, June-Ho;Hozumi, Naohiro;Okamoto, Tatsuki
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1304-1306
    • /
    • 1995
  • In this study, a neural network algorithm through a data standardization method was developed to discriminate the phase-shifted partial discharge(PD) patterns such as a $\phi$-q-n pattern. Considering the PD measurement in the field, it is not so easy to acquire absolute phase angles of PD pulses. As a consequence, one of the significant problems to be solved in applying the neural network algorithm to practical systems is to develop a method that can discriminate phase-shifted $\phi$-q-n patterns. Therefore, authors established a new method which could convert phase-shifted $\phi$-q-n patterns to a standardized $\phi$-q-n pattern which was not influenced by phase shifting. This new standardization method improved the recognition performance of a neural network for the phase-shifted $\phi$-q-n patterns considerably.

  • PDF

EFFECTS OF PHASE-LAGS AND VARIABLE THERMAL CONDUCTIVITY IN A THERMOVISCOELASTIC SOLID WITH A CYLINDRICAL CAVITY

  • Zenkour, Ashraf M.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.435-454
    • /
    • 2016
  • This paper investigates the effect of dual-phase-lags on a thermoviscoelastic orthotropic solid with a cylindrical cavity. The cylindrical cavity is subjected to a thermal shock varying heat and its material is taken to be of Kelvin-Voigt type. The phase-lag thermoelastic model, Lord and Shulman's model and the coupled thermoelasticity model are employed to study the thermomechanical coupling, thermal and mechanical relaxation (viscous) effects. Numerical solutions for temperature, displacement and thermal stresses are obtained by using the method of Laplace transforms. Numerical results are plotted to illustrate the effect phase-lags, viscoelasticity, and the variability thermal conductivity parameter on the studied fields. The variations of all field quantities in the context of dual-phase-lags and coupled thermoelasticity models follow similar trends while the Lord and Shulman's model may be different. The influence of viscosity parameter and variability of thermal conductivity is very pronounced on temperature and thermal stresses of the thermoviscoelastic solids.

An Analysis on the Performance of a Twin Stator Single-Phase Induction Manchine (단상 Twin sSator유도기의 특성해석에 관한 연구)

  • Young Moon Hwang
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.7-18
    • /
    • 1972
  • An analysis is made for the performance of twin stator single-phase induction machine having any movable asymmetrical angle of stator windings, with any symmetrical or asymmetrical magnetizing reactance and winding turn-ratio between two stators, provided that asymmetrical common squirrel cage rotor is utilized. This mechanism is a new type, which has the advantage of mading only not the performance prediction in applications as a single-phase electromagnetic driving mechanism but also the analysis prediction of single-phase induction motor with not in quadrature axis. The basis of the analyses are lead by Kron's primitive machine matrix and Morrill's double-revolving field concept. All the performances can be calculated from the test values and design details of the asymmetrical magnetizing reactance twin stator single-phase induction machine and verified by test. And its validity is still demonstrated to the pure twin stator single-phase induction machine.

  • PDF

Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 영구자석형 유도동기기의 정상상태 특성해석)

  • Kang, Gyu-Hong;Nam, Hyuk;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

Performances of Current-Waveform Modulated Single-Phase Induction Machine (전류파형을 변조한 단상유도전동기구의 특성에 관한 연구)

  • 황영문;김철우;박용규
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 1975
  • A single-phase induction motor with it's stator winding splitted into two series windings, of which the terminals of one winding is switched pulsationally by a thyristor type ON-OFF device so that the motor may operate as a pulsational shaded-pole motor, can modulate current waveforms of it's two series windings. In view of current waveform modulation method, a single-phase single-winding motor operates as a two-phase induction motor with asymmetrical axis windings where the starting torque can be obtained effectively without an auxiliary capacitor attached and it's running speed controlled by shifting phase between current waveforms differently. Equivalent circuit for analysis is modified from a double revolving field equivalent circuit of a single-phase induction motor with asymmetrical windings whose angle is 45.deg.C elet. degrees. Analysis and test results show that ON-OFF action of the pulsational shaded-pole winding has the same effect of a series capacitor, and then at heavy loads this motor operates with a small amonut of the input current than that having the fixed shaded-pole winding.

  • PDF