• Title/Summary/Keyword: Phase voltage approach

Search Result 139, Processing Time 0.02 seconds

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

The Simple Harmonic Analysis Method of the Multi-Carrier PWM Techniques by Using the Output Phase Voltage in the Multi-Level Inverter (출력 상전압을 이용한 멀티-캐리어 PWM 기법의 간단한 고조파 분석 방법)

  • 김준성;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.352-360
    • /
    • 2003
  • This paper deals with a simple method in order to analyze and compare the harmonic characteristics in the multi-level inverter. Generally, the magnitude of harmonic components becomes different according to the multi-carrier Pulse Width Modulation(PWM) techniques, the modulation index($M_i$) and the switching frequency The previous papers analyzed the harmonic characteristics from the viewpoint of the space voltage vector. Hence, the calculation of the harmonic vector becomes more difficult and complex in 4-level or over 5-level. However, the proposed method has reduced an amount of calculation and simplified the process of it, using the relationship between the reference voltage and the output phase voltage to the load neutral point. It is applied to the 5-level cascade inverter and the harmonic characteristics for each multi-carrier PWM technique are compared through the simulation.

Digital Control of a Single-Phase UPS Inverter for Robust AC-Voltage Tracking

  • Woo Young-Tae;Kim Young-Chol
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.620-630
    • /
    • 2005
  • This paper presents a digital controller for a single phase UPS inverter under two main considerations: (i) the overall system shall keep very low AC-voltage tracking error as well as no phase delay over different load conditions, and (ii) the digital controller shall be employed at a fixed sampling time. We propose that the former can be achieved by the proposed controller using the error-state approach and the latter can be dealt with by the socalled characteristics ration assignment.

A Study on the Susceptibility of Single-phase Sensitive Loads and the Three-phase Induction Motor by Voltage Sag (순간전압강하에 의한 단상 민감부하 및 삼상 유도전동기의 외란 민감도에 관한 연구)

  • Yun Sang-Yun;Moon Jong-Fil;Kim Jae-Chul;Lee Hee-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • In this paper we explore the susceptibility of common sensitive loads by voltage sags of power distribution systems. The experimental approach was used for obtaining the susceptibility of single-phase loads and the three-phase induction motor. The experimental result of single-phase loads was transformed to the ITIC(Information of Technology Industry Council) format and used for evaluating the adverse impacts of a individual and repetitive sags using the performance contour of the foreign standard data. In order to assess the impact of voltage sags on three-phase induction motor, also, the experiment was peformed. The experiment was focused on the current, torque, and speed loss of the motor during a voltage sag. For comparing the impacts of individual and repetitive voltage sags, the variations of motor torque is focused among the experimental results. The sensitive curves of instantaneous current peak are used to describe the susceptibility of three-phase induction motor and 진so it were used for the quantitative analysis of the impact of three-phase induction motor due to voltage sags. Through the results of experiment, we verified that some types loads have more severe impact at repetitive voltage sags than individual ones and proposed method can be effectively used to evaluate the actual impact of voltage sags.

Analysis and Modeling of Parallel Three-Phase Boost Converters Using Three-Phase Coupled Inductor

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1086-1095
    • /
    • 2013
  • The main issue of parallel three-phase boost converters is reduction of the low- and high frequency circulating currents. Most present technologies concentrate on low frequency circulating current because the circulating current controller cannot mitigate the high frequency circulating current. In this paper, analytical approach of three-phase coupled inductor applied to parallel system becomes an important objective to effectively reduce the low- and high frequency circulating currents. The characteristics of three-phase coupled inductor based on a structure and voltage equations are mathematically derived. The modified voltage equations are then applied to parallel three-phase boost converters to develop averaged models in stationary coordinates and rotating coordinates. Based on the averaged modeling approach, design of the circulating current controller is presented. Simulation and experimental results demonstrate the effectiveness of the analysis and modeling for the parallel three-phase boost converters using three-phase coupled inductor.

A Disturbance Observer-Based Output Feedback Controller for a DC/DC Boost Converter with Load Variation (부하변동을 고려한 DC/DC 승압형 컨버터의 외란 관측기 기반 출력 궤환 제어기)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1405-1410
    • /
    • 2009
  • Output voltage of a DC/DC power converter system is likely to be distorted if variable loads exist in the output terminal. This paper presents a new disturbance observer(DOB) approach to maintain a robust regulation of the output voltage of a boost type DC/DC converter. Unlike the buck-type converter case, the regulation problem of the boost converter is very complicated by the fact that, with respect to the output voltage to be regulated, the system is non-minimum phase. Owing to the non-minimum phase property the classical DOB approach has not been applied to the boost converter. Motivated by a recent result on the application of DOB to non-mimimum phase system, an output feedback control law is proposed by using a parallel feedforward compensator. Simulation results using the Simulink SimPowerSystems prove the performance of the proposed controller against load variation.

Fundamental Output Voltage Enhancement of Half-Bridge Voltage Source Inverter with Low DC-link Capacitance

  • Elserougi, Ahmed;Massoud, Ahmed;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.116-128
    • /
    • 2018
  • Conventionally, in order to reduce the ac components of the dc-link capacitors of the two-level Half-Bridge Voltage Source Inverter (HB-VSI), high dc-link capacitances are required. This necessitates the employment of short-lifetime and bulky electrolytic capacitors. In this paper, an analysis for the performance of low dc-link capacitances-based HB-VSI is presented to elucidate its ability to generate an enhanced fundamental output voltage magnitude without increasing the voltage rating of the involved switches. This feature is constrained by the load displacement factor. The introduced enhancement is due to the ac components of the capacitors' voltages. The presented approach can be employed for multi-phase systems through using multi single-phase HB-VSI(s). Mathematical analysis of the proposed approach is presented in this paper. To ensure a successful operation of the proposed approach, a closed loop current controller is examined. An expression for the critical dc-link capacitance, which is the lowest dc-link capacitance that can be employed for unipolar capacitors' voltages, is derived. Finally, simulation and experimental results are presented to validate the proposed claims.

Accurate Voltage Parameter Estimation for Grid Synchronization in Single-Phase Power Systems

  • Dai, Zhiyong;Lin, Hui;Tian, Yanjun;Yao, Wenli;Yin, Hang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1067-1075
    • /
    • 2016
  • This paper presents an adaptive observer-based approach to estimate voltage parameters, including frequency, amplitude, and phase angle, for single-phase power systems. In contrast to most existing estimation methods of grid voltage parameters, in this study, grid voltage is treated as a dynamic system related to an unknown grid frequency. Based on adaptive observer theory, a full-order adaptive observer is proposed to estimate voltage parameters. A Lyapunov function-based argument is employed to ensure that the proposed estimation method of voltage parameters has zero steady-state error, even when frequency varies or phase angle jumps significantly. Meanwhile, a reduced-order adaptive observer is designed as the simplified version of the proposed full-order observer. Compared with the frequency-adaptive virtual flux estimation, the proposed adaptive observers exhibit better dynamic response to track the actual grid voltage frequency, amplitude, and phase angle. Simulations and experiments have been conducted to validate the effectiveness of the proposed observers.

A Novel Measurement Approach for the Half-wave Voltage of Phase Modulator based on PM-MZI Photonic Link

  • Xianghua, Li;Chun, Yang;Quanyi, Ye;Yuhua, Chong;Zhenghua, Zhou
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.288-291
    • /
    • 2014
  • This paper presents a new method for measuring the half-wave voltage $V_{\pi}$ of an electro-optic phase modulator based on a phase-modulated photonic link with interferometric demodulation. By using this method, the $V_{\pi}$ can be obtained with the RF voltage amplitude input required to achieve 1-dB gain compression of link and the differential delay of a Mach-Zehnder interferometer. We measure the $V_{\pi}$ of a commercial phase modulator by using the presented method and the carrier/the first sideband intensity ratio method. Furthermore, we compare the two measurements with the typical value provided by the manufacturer. The experiment shows that this novel measurement method is feasible, straightforward, and accurate.